Skip to main content

Circulating Tumor Cells (CTC) and Tumor-Derived Extracellular Vesicles (tdEV)

  • Chapter
  • First Online:
Circulating Tumor Cells

Part of the book series: Current Cancer Research ((CUCR))

  • 415 Accesses

Abstract

The observation that increasing circulating tumor cell (CTC) and tumor-derived extracellular vesicle (tdEV) load is directly related to worse clinical outcome of cancer patients is in line with expectations. However, both CTC and tdEV exhibit inter- and intra-patient heterogeneity, and the puzzle is yet to be deciphered in regard to the phenotype of CTC or tdEV that can predict prognosis and response to therapy or an effective treatment. A large variety of different approaches to identify CTC and tdEV have emerged over the last two decades, some of which have been evaluated in the clinic, whereas others not. In the second case, we can just speculate what is the output of these techniques and how it is translated to better understand the metastatic process and guide cancer patient care more effectively. Here, we will review what we have learned from CTC and tdEV identified by the CellSearch system and discuss our initial attempts to further characterize tdEV and explore their potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiersch, K. Der Epithelialkrebs, namentlich der haut. Leipzig (1865).

    Google Scholar 

  2. Ashworth, T. R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14, 146–147 (1869).

    Google Scholar 

  3. Goldmann, E. Anatomische unterschungen uber die verbreitungswege bosartige geschulste. Beitr Klin Chir 18, 595 (1897).

    Google Scholar 

  4. Mayo, W. Grafting and traumatic dissemination of cancer. JAMA 60, 512 (1913).

    Article  Google Scholar 

  5. Pool, EH & Dunlop, G. Cancer cells in the blood stream. Am J Cancer 21, 99–102 (1934).

    Article  Google Scholar 

  6. Engell, H. C. Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Acta Chir. Scand. Suppl. 201, 1–70 (1955).

    CAS  PubMed  Google Scholar 

  7. Moore, G., Sanberg, A. & Watne, A. Spread of cancer and its relation to chemotherapy. JAMA 172, 1729–1733 (1960).

    Article  CAS  Google Scholar 

  8. Fisher, J. C., Ketcham, A. S., Hume, R. B. & Malmgren, R. A. Significance of cancer cells in operative wounds. Am. J. Surg. 114, 514–519 (1967).

    Article  CAS  PubMed  Google Scholar 

  9. Brugger, W. et al. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83, 636–640 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Ross, A. Minimal residual disease in solid tumor malignancies: a review. 7, 9–18 (1998).

    CAS  Google Scholar 

  11. Spyridonidis, A. et al. Minimal residual disease in autologous hematpoietic harvest from breast cancer patients. Ann. Oncol. 821–826 (1998).

    Google Scholar 

  12. Gross, H. J., Verwer, B., Houck, D., Hoffman, R. A. & Recktenwald, D. Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proc. Natl. Acad. Sci. U. S. A. 92, 537–541 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Racila, E. et al. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U. S. A. 95, 4589–4594 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pecora, A. L. et al. Breast cancer cell contamination of blood stem cell products in patients with metastatic breast cancer: Predictors and clinical relevance. Biol. Blood Marrow Transplant. 8, 536–543 (2002).

    Article  PubMed  Google Scholar 

  15. Allard, W. J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  PubMed  Google Scholar 

  16. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, (2004).

    Google Scholar 

  17. Cohen, S. J. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    Article  PubMed  Google Scholar 

  18. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. cancer Res. 14, 6302–9 (2008).

    Article  PubMed  Google Scholar 

  19. Genetics, N. & Medicine, N. www.nature.com/collections/cancer-milestones December 2020. (2020).

  20. Budd, G. T. et al. Circulating tumor cells versus imaging - Predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12, 6403–6409 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Heller, G. et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: Is real circulating tumor cell number superior to prostate-specific antigen? J. Clin. Oncol. 36, 2353 (2018).

    Article  Google Scholar 

  22. Smerage, J. B. et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J. Clin. Oncol. 32, 3483–3489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bidard, F. C. et al. Efficacy of Circulating Tumor Cell Count-Driven vs Clinician-Driven First-line Therapy Choice in Hormone Receptor-Positive, ERBB2-Negative Metastatic Breast Cancer: The STIC CTC Randomized Clinical Trial. JAMA Oncol. (2020) doi:https://doi.org/10.1001/jamaoncol.2020.5660.

  24. Coumans, F. A. W., Doggen, C. J. M., Attard, G., de Bono, J. S. & Terstappen, L. W. M. M. All circulating EpCAM+CK+CD45-objects predict overall survival in castration-resistant prostate cancer. Ann. Oncol. 21, 1851–1857 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lorente, D. et al. Castration-Resistant Prostate Cancer Tissue Acquisition From Bone Metastases for Molecular Analyses. Clin. Genitourin. Cancer 14, 485–493 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Aggarwal, C. et al. Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 5, 173–180 (2019).

    Article  PubMed  Google Scholar 

  28. Lau, E. et al. Detection of ctDNA in plasma of patients with clinically localised prostate cancer is associated with rapid disease progression. Genome Med. 12, 1–11 (2020).

    Article  Google Scholar 

  29. Nanou, A. et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget 9, 19283–19293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larson, C. J. et al. Apoptosis of circulating tumor cells in prostate cancer patients. Cytom. Part A 62, 46–53 (2004).

    Article  Google Scholar 

  32. Rao, Chandra, Larson Christoph, Repollet Madeline. Rutner, Herman, Terstappen Leon, O’Hara Mark, G. S. US7863012.pdf. (2011).

    Google Scholar 

  33. De Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  PubMed  Google Scholar 

  34. Zeune, L. et al. Quantifying HER-2 expression on circulating tumor cells by ACCEPT. PLoS One 12, (2017).

    Google Scholar 

  35. Nanou, A. et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br. J. Cancer 122, 801–811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nanou, A., Zeune, L. L., Bidard, F. C., Pierga, J. Y. & Terstappen, L. W. M. M. HER2 expression on tumor-derived extracellular vesicles and circulating tumor cells in metastatic breast cancer. Breast Cancer Res. 22, 1–11 (2020).

    Article  Google Scholar 

  37. De Wit, S. et al. EpCAMhigh and EpCAMlow circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget 9, 35705–35716 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. de Wit, S. et al. Single tube liquid biopsy for advanced non-small cell lung cancer. Int. J. Cancer 144, 3127–3137 (2019).

    Article  PubMed  Google Scholar 

  39. Zeune, L. L. et al. Deep Learning of Circulating Tumor Cells. 1–24 (2018).

    Google Scholar 

  40. Nanou, A., Zeune, L. L. & Terstappen, L. W. M. M. Leukocyte-Derived Extracellular Vesicles in Blood with and without EpCAM Enrichment. Cells (2019) doi:https://doi.org/10.3390/cells8080937.

  41. Kaldjian, E. P. et al. The RareCyte® platform for next-generation analysis of circulating tumor cells. Cytom. Part A 93, 1220–1225 (2018).

    Article  CAS  Google Scholar 

  42. Coumans, F. A. W., Ligthart, S. T., Uhr, J. W. & Terstappen, L. W. M. M. Challenges in the Enumeration and Phenotyping of CTC. Clin. cancer Res. 18, 5711–8 (2012).

    Article  PubMed  Google Scholar 

  43. Tang, C. M. et al. Blood-based biopsies—clinical utility beyond circulating tumor cells. Cytom. Part A 93, 1246–1250 (2018).

    Article  CAS  Google Scholar 

  44. Sollier-Christen, E., Renier, C., Kaplan, T., Kfir, E. & Crouse, S. C. VTX-1 Liquid Biopsy System for Fully-Automated and Label-Free Isolation of Circulating Tumor Cells with Automated Enumeration by BioView Platform. Cytom. Part A 93, 1240–1245 (2018).

    Article  CAS  Google Scholar 

  45. Miller, M. C., Robinson, P. S., Wagner, C. & O’Shannessy, D. J. The Parsortix™ Cell Separation System—A versatile liquid biopsy platform. Cytom. Part A 93, 1234–1239 (2018).

    Article  Google Scholar 

  46. Yu, L. et al. An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood. Cytom. Part A 93, 1226–1233 (2018).

    Article  CAS  Google Scholar 

  47. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mishra, A. et al. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc. Natl. Acad. Sci. U. S. A. 117, 16839–16847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rivello, F. et al. Probing single-cell metabolism reveals prognostic value of highly metabolically active circulating stromal cells in prostate cancer. Sci. Adv. 6, 1–11 (2020).

    Article  Google Scholar 

  51. Zeune, L. L. et al. How to Agree on a CTC: Evaluating the Consensus in Circulating Tumor Cell Scoring. Cytom. Part A 93, 1202–1206 (2018).

    Article  Google Scholar 

  52. Ignatiadis, M. et al. International study on inter-reader variability for circulating tumor cells in breast cancer. Breast Cancer Res. 16, (2014).

    Google Scholar 

  53. Kraan, J. et al. External quality assurance of circulating tumor cell enumeration using the CellSearch(®) system: a feasibility study. Cytometry B. Clin. Cytom. 80, 112–8 (2011).

    Article  PubMed  Google Scholar 

  54. Neves, R. P. L. et al. OUP accepted manuscript. Clin. Chem. 11, 1–11 (2021).

    Google Scholar 

  55. Nanou, A. et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br. J. Cancer 122, 801–811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nanou, A. et al. Endothelium-Derived Extracellular Vesicles Associate with Poor Prognosis in Metastatic Colorectal Cancer.

    Google Scholar 

  57. Baran, J. et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol. Immunother. 59, 841–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Vagner, T. et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7, (2018).

    Google Scholar 

  59. Zijlstra, A. & Di Vizio, D. Size matters in nanoscale communication. Nat. Cell Biol. 20, 228–230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Di Vizio, D. et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181, 1573–1584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6, 11327–11341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ciardiello, C. et al. Focus on extracellular vesicles: New frontiers of cell-to-cell communication in cancer. Int. J. Mol. Sci. 17, 1–17 (2016).

    Article  Google Scholar 

  63. Lee, G. R., Bithell, T. C., Foerster, J., Athens, J. W. & Lukens, J. N. Wintrobe’s clinical hematology. (Lea & Febiger, 1993).

    Google Scholar 

  64. Coumans, F., van Dalum, G. & Terstappen, L. W. M. M. CTC Technologies and Tools. Cytom. Part A 93, 1197–1201 (2018).

    Article  Google Scholar 

  65. Kuchinskiene, Z. & Carlson, L. A. Composition, concentration, and size of low density lipoproteins and of subfractions of very low density lipoproteins from serum of normal men and women. J. Lipid Res. 23, 762–769 (1982).

    Article  CAS  PubMed  Google Scholar 

  66. Corash, L., Costa, J. L., Shafer, B., Donlon, J. A. & Murphy, D. Heterogeneity of human whole blood platelet subpopulations. III. Density-dependent differences in subcellular constituents. Blood 64, 185–193 (1984).

    Article  CAS  PubMed  Google Scholar 

  67. Simonsen, J. B. What Are We Looking At? Extracellular Vesicles, Lipoproteins, or Both? Circ. Res. 121, 920–922 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Nanou, A. et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget 9, (2018).

    Google Scholar 

  69. Johnsen, K. B., Gudbergsson, J. M., Andresen, T. L. & Simonsen, J. B. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim. Biophys. Acta - Rev. Cancer 1871, 109–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Ricklefs, F. L. et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J Extracell Vesicles 8, 1588555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Wit, S. et al. Classification of Cells in CTC-Enriched Samples by Advanced Image Analysis. Cancers (Basel). (2018) doi:https://doi.org/10.3390/cancers10100377.

  72. Sunkara, V., Woo, H.-K. & Cho, Y.-K. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst 141, 371–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Brennan, K. et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci. Rep. 10, 1–13 (2020).

    Article  Google Scholar 

  74. Lobb, R. J. et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 1–11 (2015).

    Article  Google Scholar 

  75. Takov, K., Yellon, D. M. & Davidson, S. M. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. J. Extracell. Vesicles 8, 1560809 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Liangsupree, T., Multia, E. & Riekkola, M. L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A 1636, 461773 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Coumans, F. A. W., Siesling, S. & Terstappen, L. W. M. M. Detection of cancer before distant metastasis. BMC Cancer 13, 283 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vermesh, O. et al. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat. Biomed. Eng. 2, 696–705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, T. H. et al. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells. Nat. Commun. 10, (2019).

    Google Scholar 

  81. Sparano, J. A. et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 379, 111–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Winner, B. S. et al. Analysis of the mamma print breast cancer assay in a predominantly postmenopausal cohort. Clin. Cancer Res. 14, 2988–2993 (2008).

    Article  Google Scholar 

  83. Veys, I. et al. Evaluation of the histological size of the sentinel lymph node metastases using RT–PCR assay: a rapid tool to estimate the risk of non-sentinel lymph node invasion in patients with breast cancer. Breast Cancer Res. Treat. 124, 599–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Braun, S. & Marth, C. Circulating tumor cells in metastatic breast cancer--toward individualized treatment? N. Engl. J. Med. 351, 824–6 (2004).

    Google Scholar 

  85. Braun, S., Vogl, F. & Naume, B. A pooled analysis of bone marrow micrometastasis in breast cancer. … Engl. J. … (2005).

    Google Scholar 

  86. Van Dalum, G. et al. Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int. J. Oncol. 46, 1361–1368 (2015).

    Article  PubMed  Google Scholar 

  87. Janni, W. J. et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin. Cancer Res. 22, (2016).

    Google Scholar 

  88. Hoshino, A. et al. Resource Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers ll Resource Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. 1044–1061 (2020).

    Google Scholar 

  89. Kharaziha, P., Ceder, S., Li, Q. & Panaretakis, T. Tumor cell-derived exosomes: A message in a bottle. Biochim. Biophys. Acta - Rev. Cancer 1826, 103–111 (2012).

    Article  CAS  Google Scholar 

  90. Hayes, D. F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Cristofanilli, M. et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 23, 1420–30 (2005).

    Article  PubMed  Google Scholar 

  92. Tol, J. et al. Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann. Oncol. 21, 1006–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Coumans, F. A. W., Ligthart, S. T. & Terstappen, L. W. M. M. Interpretation of changes in Circulating Tumor Cell counts. Transl. … 5, 486–91 (2012).

    Google Scholar 

  94. Lorente, D. et al. Decline in Circulating Tumor Cell Count and Treatment Outcome in Advanced Prostate Cancer. Eur. Urol. 70, 985–992 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lorente, D. et al. Circulating tumour cell increase as a biomarker of disease progression in metastatic castration-resistant prostate cancer patients with low baseline CTC counts. Ann. Oncol. 29, 1554–1560 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl. Acad. Sci. 1–6 (2013) doi:https://doi.org/10.1073/pnas.1313594110.

  97. Lambros, M. B. et al. Single-cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clin. Cancer Res. 24, 5635–5644 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Faugeroux, V. et al. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat. Commun. 11, (2020).

    Google Scholar 

  99. Kanada, M., Bachmann, M. H. & Contag, C. H. Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends in Cancer vol. 2 84–94 (2016).

    Article  PubMed  Google Scholar 

  100. Lee, T. H. et al. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem. Biophys. Res. Commun. 451, 295–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Shah, R., Patel, T. & Freedman, J. E. Circulating Extracellular Vesicles in Human Disease. N. Engl. J. Med. 379, 958–966 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Antonyak, M. A. et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc. Natl. Acad. Sci. U. S. A. 108, 4852–4857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Lima, L. G., Leal, A. C., Vargas, G., Porto-Carreiro, I. & Monteiro, R. Q. Intercellular transfer of tissue factor via the uptake of tumor-derived microvesicles. Thromb. Res. 132, 450–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Yue, S., Mu, W., Erb, U. & Zöller, M. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget 6, 2366–2384 (2015).

    Article  PubMed  Google Scholar 

  106. Cooks, T. et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nanou, A., Crespo, M., Flohr, P., De Bono, J. S. & Terstappen, L. W. M. M. Scanning electron microscopy of circulating tumor cells and tumor-derived extracellular vesicles. Cancers (Basel). 10, 1–17 (2018).

    Article  Google Scholar 

  108. Enciso-Martinez, A., Timmermans, F. J., Nanou, A., Terstappen, L. W. M. M. & Otto, C. SEM-Raman image cytometry of cells. Analyst 143, 4495–4502 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Enciso-Martinez, A. et al. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J. Extracell. Vesicles (2020) doi:https://doi.org/10.1080/20013078.2020.1730134.

  110. Enciso-Martinez, A. et al. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine Nanotechnology, Biol. Med. 24, 102109 (2020).

    CAS  Google Scholar 

  111. Enciso-Martinez, A. et al. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J. Extracell. Vesicles (2020) doi:https://doi.org/10.1080/20013078.2020.1730134.

  112. Enciso-Martinez, A. EV TRAPPING: Raman characterization of single tumor-derived extracellular vesicles. (University of Twente, 2020). doi:https://doi.org/10.3990/1.9789036550192.

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research Perspectief CANCER-ID 14198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. M. M. Terstappen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nanou, A., Beekman, P., Enciso Martinez, A., Terstappen, L.W.M.M. (2023). Circulating Tumor Cells (CTC) and Tumor-Derived Extracellular Vesicles (tdEV). In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_6

Download citation

Publish with us

Policies and ethics