Skip to main content

The Galleri Assay

  • Chapter
  • First Online:
Circulating Tumor Cells

Part of the book series: Current Cancer Research ((CUCR))

  • 421 Accesses

Abstract

Despite significant advances in cancer therapeutics, cancer is still the second leading cause of death and is poised to become the leading cause of death globally [3]. Early cancer detection has been recognized as critical to improving outcomes and lessening the burden of cure [4, 6–11], but effective screening paradigms exist only for a subset of five common cancers, and compliance with screening recommendations is variable [12–17]. GRAIL has developed Galleri, a methylation-based multi-cancer early detection test [36, 56]. The Galleri test detects a shared signal from more than 50 cancer types, and can predict with high accuracy where in the body the cancer is coming from [37 - a critical capability of MCED tests. Importantly, the test only requires a simple blood draw. Modeling suggests that implementing Galleri in addition to the recommended screening tests has the potential to avert nearly 40% of cancer-specific deaths that would otherwise be expected to occur in the next five years. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGinley, L. (June 18, 2020). Nation’s cancer chief warns delays in cancer care are likely to result in thousands of extra deaths in coming years. Washington Post. https://www.washingtonpost.com/health/2020/06/18/nations-cancer-chief-warns-delays-cancer-care-are-likely-result-thousands-extra-deaths-coming-years/ Accessed July 2, 2022.

  2. American Association for Cancer Research. AACR Report on the Impact of COVID-19 on Cancer Research and Patient Care. https://www.AACR.org/COVIDReport. Published Feb 9, 2022. [Accessed July 2, 2022].

    Google Scholar 

  3. Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395:785–794.

    Article  PubMed  Google Scholar 

  4. Ahlquist DA. Universal cancer screening: revolutional, rational, and realizable. NPJ Precis Oncol 2018;2:23. https://doi.org/10.1038/s41698-018-0066-x. eCollection 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Osborne CM, Hardisty E, Devers P, et al. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat Diagn. 2013;33(6):609–611.

    Article  PubMed  Google Scholar 

  6. Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3:243–252.

    Article  CAS  PubMed  Google Scholar 

  7. Clarke CA, Hubbell E, Kurian AW, Colditz GA, Hartman A-R, Gomez SL. Projected reductions in absolute cancer-related deaths from diagnosing cancers before metastasis, 2006e2015. Cancer Epidemiol Biomarkers Prev. 2020;29:895–902.

    Article  PubMed  Google Scholar 

  8. Hawkes N. Cancer survival data emphasise importance of early diagnosis. Br Med J. 2019;364:l408.

    Article  Google Scholar 

  9. Cancer Research UK. Why is early diagnosis important? 2021. Available at: https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important. Accessed July 2, 2022.

  10. National Cancer Institute. Research Areas: Detection and Diagnosis. 2020. Available at: https://www.cancer.gov/research/areas/diagnosis. Accessed July 2, 2022.

  11. The ASCO Post. World Cancer Day 2019: Emphasis on Early Detection. 2019. Available at: https://ascopost.com/News/59711. Accessed July 2, 2022.

  12. Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2019: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2019;69:184–210.

    Article  PubMed  Google Scholar 

  13. Hall IJ, Tangka FKL, Sabatino SA, Thompson TD, Graubard BI, Breen N. Patterns and trends in cancer screening in the United States. Prev Chronic Dis. 2018;15:170465.

    Article  Google Scholar 

  14. Narayan A, Fischer A, Zhang Z, Woods R, Morris E, Harvey S. Nationwide cross-sectional adherence to mammography screening guidelines: national behavioral risk factor surveillance system survey results. Breast Cancer Res Treat. 2017;164:719–725.

    Article  PubMed  Google Scholar 

  15. Limmer K, LoBiondo-Wood G, Dains J. Predictors of cervical cancer screening adherence in the United States: a systematic review. J Adv Pract Oncol. 2014;5:31–41.

    PubMed  PubMed Central  Google Scholar 

  16. Daskalakis C, DiCarlo M, Hegarty S, Gudur A, Vernon SW, Myers RE. Predictors of overall and test-specific colorectal cancer screening adherence. Prev Med. 2020;133:106022.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cossu G, Saba L, Minerba L, Mascalchi M. Colorectal cancer screening: the role of psychological, social and background factors in decision-making process. Clin Pract Epidemiol Ment Health. 2018;14:63–69.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lehman CD, Arao RF, Sprague BL, et al. National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology. 2017;283:49–58.

    Article  PubMed  Google Scholar 

  19. Pinsky PF, Gierada DS, Black W, et al. Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment. Ann Intern Med. 2015;162:485–491.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim JJ, Burger EA, Regan C, Sy S. Screening for cervical cancer in primary care: a decision analysis for the US Preventive Services Task Force. J Am Med Assoc. 2018;320:706–714.

    Article  Google Scholar 

  21. Croswell JM, Kramer BS, Kreimer AR, et al. Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann Fam Med. 2009;7:212–222.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peralta P, Hall MP, Bhan SS, et al. Industry engagement: accelerating discovery, application, and adoption through industry partnerships. Cancer 2022;128(Suppl 4):918–926.

    Article  PubMed  Google Scholar 

  23. Heitzer E, Auinger L, Speicher MR. Cell-Free DNA and Apoptosis: How Dead Cells Inform About the Living. Trends Mol Med. 2020; 26: 519–528. https://doi.org/10.1016/j.molmed.2020.01.012 PMID: 32359482

    Article  CAS  PubMed  Google Scholar 

  24. Bronkhorst AJ, Wentzel JF, Aucamp J, van Dyk E, du Plessis L, Pretorius PJ. Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta. 2016; 1863: 157–165. https://doi.org/10.1016/j.bbamcr.2015.10.022 PMID: 26529550

    Article  CAS  PubMed  Google Scholar 

  25. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The Clinical Utilization of Circulating Cell Free DNA (CCFDNA) in Blood of Cancer Patients. Int J Mol Sci. 2013; 14: 18925–18958. https://doi.org/10.3390/ijms140918925 PMID: 24065096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aalipour A, Chuang H-Y, Murty S, D’Souza AL, Park S, Gulati GS, et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat Biotechnol. 2019; 37: 531–539. https://doi.org/10.1038/s41587-019-0064-8 PMID: 30886438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mandel P, Metais P. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.

    CAS  PubMed  Google Scholar 

  28. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014 Feb 19;6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094.

  29. Han DSC, Ni M, Chan RWY, Chan VWH, Lui KO, Chiu RWK, et al. The Biology of Cell-free DNA Fragmentation and the Roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet. 2020; 106: 202–214. https://doi.org/10.1016/j.ajhg.2020.01.008 PMID: 32004449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diaz LA, Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J Clin Oncol. 2014; 32: 579–586. https://doi.org/10.1200/JCO.2012.45.2011 PMID: 24449238

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001; 61: 1659–1665. PMID: 11245480

    CAS  PubMed  Google Scholar 

  32. Rew DA, Wilson GD. Cell production rates in human tissues and tumours and their significance. Part 1: an introduction to the techniques of measurement and their limitations. Eur J Surg Oncol. 2000; 26:227–238. https://doi.org/10.1053/ejso.1999.0781 PMID: 10753534

    Article  CAS  PubMed  Google Scholar 

  33. Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One. 2011;6(9):e23418 Epub 2011/09/13. https://doi.org/10.1371/journal.pone.0023418 PONE-D-11-07649 [pii].

  34. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–1474.

    Article  PubMed  Google Scholar 

  35. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, et al. (Eds.). AJCC Cancer Staging Manual (8th edition). Springer International Publishing: American Joint Commission on Cancer; 2017.

    Google Scholar 

  36. Liu MC, Oxnard GR, Klein EA, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745–759. https://doi.org/10.1016/j.annonc.2020.02.011

    Article  CAS  PubMed  Google Scholar 

  37. Klein E, Richards D, Cohn A, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Annals Oncol. 2021;32(9):1167–1177.

    Article  CAS  Google Scholar 

  38. Jamshidi A, Liu MC, Klein E, et al. Evaluation of Cell-Free DNA Approaches for Multi-Cancer Early Detection. Cancer Cell. 2022;40(12):1537–1549.

    Article  CAS  PubMed  Google Scholar 

  39. Liu MC, Klein EA, Hubbell E, et al. Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: the Circulating Cell-Free Genome Atlas (CCGA) study. Annals Oncol. 2018;29(suppl_8):viii14-viii57.

    Article  Google Scholar 

  40. Jasiwal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science 2019;366(6465): eaan4673. https://doi.org/10.1126/science.aan4673.

    Article  CAS  Google Scholar 

  41. Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25(12):1928–1937. doi:https://doi.org/10.1038/s41591-019-0652-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu Y, et al. False-Positive Plasma Genotyping Due to Clonal Hematopoiesis. Clin Cancer Res 2018;24, 4437–4443.

    Article  CAS  PubMed  Google Scholar 

  43. Venn O, Hubbell E, Sakarya O, et al. Tumor shedding into cell-free DNA (cfDNA) is associated with high-mortality cancers. Poster presented at: The Biology of Genomes Meeting; May 7–11, 2019; Cold Spring Harbor, NY. Abstract 280.

    Google Scholar 

  44. Pepe MS, Etzione R, Fang Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001;93(14):1054–61. https://doi.org/10.1093/jnci/93.14.1054.

    Article  CAS  PubMed  Google Scholar 

  45. EDRN Website: https://edrn.nci.nih.gov/about/five-phase-approach-and-probe-study-design. Accessed June 27, 2022.

  46. Chen X, Dong Z, Hubbell E, et al. Prognostic Significance of Blood-Based Multi-cancer Detection in Plasma Cell-Free DNA. Clin Cancer Res 2021;27:4221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Melton C, Singh P, Venn O, Hubbell E, Gross S, Saito Y, et al. Tumor methylation patterns to measure tumor fraction in cell-free DNA. JCO 2020;38:3052.

    Article  Google Scholar 

  48. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546e1558.

    Article  Google Scholar 

  49. Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res. 2020; 10(7): 1954–1978.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tammemägi MC, Church TR, Hocking WG, et al. Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts. PLoS Med 2014; 11: e1001764.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Final Recommendation Statement: Lung Cancer: Screening - US Preventive Services Task Force. https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/lung-cancer-screening (accessed March 16, 2017).

  52. Hui L, Bianchi DL. Fetal fraction and noninvasive prenatal testing: What clinicians need to know. Prenat Diagn. 2020;40(2):155–163. https://doi.org/10.1002/pd.5620. Epub 2019 Dec 10.

    Article  PubMed  Google Scholar 

  53. Myint NNM, Verma AM, Fernandez-Garcia D, Sarmah P, Tarpey PS, Al-Aqbi SS, Cai H, Trigg R, West K, Howells LM, Thomas A, Brown K, Guttery DS, Singh B, Pringle HJ, McDermott U, Shaw JA, Rufini A: Circulating tumor DNA in patients with colorectal adenomas: assessment of detectability and genetic heterogeneity. Cell Death Dis. 2018;9:1–16.

    Article  CAS  Google Scholar 

  54. Abbosh C, Birkbak NJ, Wilson GA, et al.: Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017;545:446–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu MC, Carter JM, Visscher DW, et al. Blood-based cancer detection in plasma cell-free DNA (cfDNA): evaluating clinical and pathologic tumor characteristics in participants with breast cancer. Cancer Res 2020;80:P5-01-01. https://doi.org/10.1158/1538-7445.SABCS19-P5-01-01

  56. NCI Staff. (October 30, 2017). TMIST Trial Aims to Provide Clarity on Breast Cancer Screening Approaches. National Cancer Institute Cancer Events Blog. https://www.cancer.gov/news-events/cancer-currents-blog/2017/tmist-breast-cancer-screening Accessed July 23, 2022.

  57. Moss J, Zick A, Grinshpun A, et al: Circulating breast-derived DNA allows universal detection and monitoring of localized breast cancer. Ann Oncol 2020;31:395–403.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Xu Y, Gong Y, et al. Clinical factors associated with circulating tumor DNA in primary breast cancer. Mol Oncol 2019;13:1033–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kirchweger P, Kupferthaler A, Burghofer J, et al. Circulating tumor DNA correlates with tumor burden and predicts outcome in pancreatic cancer irrespective of tumor stage. Eur J Surg Oncol 2021:S0748-7983(21)00947-1.

    Google Scholar 

  60. Bredno J, Venn O, Chen X, et al. Circulating Tumor DNA Allele Fraction: A Candidate Biological Signal for Multi-Cancer Early Detection Tests to Assess the Clinical Significance of Cancers. Am J Pathol. In press.

    Google Scholar 

  61. Bredno J, Lipson J, Venn O, Aravanis AM, Jamshidi A. Clinical correlates of circulating cell-free DNA tumor fraction. PLOS One 2021;16(8):e0256436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bredno J, Gross S, Fields AP, et al. Classifier Performance of a cfDNA-Based Multi-Cancer Detection Test on Uncommon Cancer Types. Cancer Res 2020;80(16_Supplement):2308.

    Google Scholar 

  63. Burgener JM, Zou J, Zhao Z, et al. Tumor-naïve multimodal profiling of circulating tumor DNA in head and neck squamous cell carcinoma. Clin Cancer Res 2021;27:4230–4244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hsiehchen D, Espinoza M, Gerber DE, Beg MS. Clinical and biological determinants of circulating tumor DNA detection and prognostication using a next-generation sequencing panel assay. Cancer Biol Ther 2021;0:1–10.

    Google Scholar 

  65. Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017;9(403):eaan2415.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Winther-Larsen A, Demuth C, Fledelius J, et al. Correlation between circulating mutant DNA and metabolic tumour burden in advanced non-small cell lung cancer patients. Br J Cancer 2017;117:704–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Uson Junior PLS, Majeed U, Yin J, et al. Cell-Free Tumor DNA Dominant Clone Allele Frequency (DCAF) Is Associated With Poor Outcomes In Advanced Biliary Cancers Treated With Platinum-Based Chemotherapy. JCO Precision Oncology 2022;6:e2100274. Published online June 6, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chabon JJ, Hamilton EG, Kurtz DM, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580: 245–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang J, Adams H-P, Yao L, et al. Concordance of Genomic Alterations by Next-Generation Sequencing in Tumor Tissue versus Cell-Free DNA in Stage I–IV Non–Small Cell Lung Cancer. J Mol Diagn. 2020; 22: 228–235.

    Article  CAS  PubMed  Google Scholar 

  70. Bredno J, Lipson J, Venn O, et al. Tumor area and microscopic extent of invasion to determine circulating tumor DNA fraction in plasma and detectability of colorectal cancer (CRC). J Clin Oncol. 2020;38:243–243.

    Article  Google Scholar 

  71. Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017;17:223–238.

    Article  CAS  PubMed  Google Scholar 

  72. CISNET Model Registry. National Cancer Institute Cancer Intervention and Surveillance Modeling Network, CISNET Model Registry; 2020. Available from: https://resources.cisnet.cancer.gov/registry/packages/.

    Google Scholar 

  73. Pandharipande PV, Heberle C, Dowling EC, Kong CY, Tramontano A, Perzan KE, Brugge W, Hur C. Targeted screening of individuals at high risk for pancreatic cancer: results of a simulation model. Radiology. 2015 Apr;275(1):177–87. doi: 10.1148/radiol.14141282. Epub 2014 Nov 12. Erratum in: Radiology. 2016 Jan;278(1):306.

    Google Scholar 

  74. Wever EM, Draisma G, Heijnsdijk EAM, de Koning HJ. How Does Early Detection by Screening Affect Disease Progression?: Modeling Estimated Benefits in Prostate Cancer Screening. Med Decis Making. 2011 Jul-Aug;31(4):550–8. https://doi.org/10.1177/0272989X10396717. Epub 2011 Mar 15.

  75. Gainullin V, Tong J, Li Y, et al. Characterization of time to diagnosis indicates shorter interval for screenable versus symptom-driven cancers. J Clin Oncol 40, 2022;suppl 16:10526.

    Article  Google Scholar 

  76. Klein EA, Beer TM, McDonnell III CH, et al. PATHFINDER: A Prospective Cohort Study of Blood-Based Multi-cancer Early Detection. Manuscript under review.

    Google Scholar 

  77. Cuzick J, Cafferty FH, Edwards R, Møller H, Duffy SW. Surrogate endpoints for cancer screening trials: general principles and an illustration using the UK Flexible Sigmoidoscopy Screening Trial. J Med Screen 2007;14(4):178–85. https://doi.org/10.1258/096914107782912059.

    Article  PubMed  Google Scholar 

  78. Shapiro S, Strax P, Venet L. Periodic Breast Cancer Screening in Reducing Mortality From Breast Cancer. JAMA. 1971;215(11):1777–1785. doi:https://doi.org/10.1001/jama.1971.03180240027005

    Article  CAS  PubMed  Google Scholar 

  79. Nelson HD, Fu R, Cantor A, Pappas M, Daeges M, Humphrey L. Effectiveness of Breast Cancer Screening: Systematic Review and Meta-analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation. Annals Int Med 2016;164(4):244–255.

    Article  Google Scholar 

  80. Seigel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022;72(1):7–33.

    Google Scholar 

  81. Landy R, Pesola F, Castañon A, Sasieni P. Impact of cervical screening on cervical cancer mortality: estimation using stage-specific results from a nested case–control study. Br J Cancer 2016;115:1140–1146.

    Article  PubMed  PubMed Central  Google Scholar 

  82. GRAIL (May 31, 2022a). GRAIL Announces Collaboration with U.S. Department of Veterans Affairs and the Veterans Health Foundation to Evaluate Galleri® Multi-Cancer Early Detection Test [press release]. https://grail.com/press-releases/grail-announces-collaboration-with-u-s-department-of-veterans-affairs-and-the-veterans-health-foundation-to-evaluate-galleri-mutli-cancer-early-detection-test/

  83. GRAIL (June 3, 2022b). GRAIL and Ochsner Health Launch New Initiatives to Improve Cancer Detection Rates in Louisiana [press release]. https://grail.com/press-releases/grail-and-ochsner-health-launch-new-initiatives-to-improve-cancer-detection-rates-in-louisiana/

  84. Nadauld LD, McDonnell CH, Beer TM, et al. The PATHFINDER Study: Assessment of the Implementation of an Investigational Multi-Cancer Early Detection Test into Clinical Practice. Cancers. 2021;13:3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hubbell E, Clarke CA, Aravanis AM, Berg CA. Modeled Reductions in Late-stage Cancer with a Multi-Cancer Early Detection Test. Cancer Epidemiol Biomarkers Prev. 2021;30(3):460–468.

    Google Scholar 

  86. Bianchi DW, Chudova D, Sehnert AJ, et al. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. 2015. JAMA. 314(2):162–9.

    Google Scholar 

  87. Nicholson BD, Oke J, Virdee P, et al. SYMPLIFY: Large-scale observational prospective cohort study of a multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales. Lancet Oncology. Manuscript in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan P. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, M.P., Aravanis, A.M. (2023). The Galleri Assay. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_25

Download citation

Publish with us

Policies and ethics