Skip to main content

Minor Allele Enrichment in Liquid Biopsies Using Nuclease-Assisted Elimination of Wild-Type DNA

  • Chapter
  • First Online:
Circulating Tumor Cells

Part of the book series: Current Cancer Research ((CUCR))

  • 367 Accesses

Abstract

Circulating DNA analysis presents opportunities in harnessing the potential of tumor biomarkers in a minimally invasive manner but also presents several technical challenges. For example, excess wild-type (WT) DNA often masks low-level DNA alterations containing clinically relevant information for cancer diagnosis or therapy. In this chapter, we describe nuclease-assisted minor allele enrichment with probe overlap (NaME-PrO), an approach to reduce WT-DNA to facilitate detection of rare alterations. NaME-PrO employs a double-strand DNA-specific nuclease and overlapping oligonucleotide probes interrogating multiple DNA targets of interest. Following genomic DNA denaturation, the temperature is lowered so that probes form double-stranded regions with their targets, thereby guiding nuclease digestion to the targeted DNA sites. Mutations create mismatches that inhibit digestion; thus subsequent amplification yields DNA with enhanced mutations at multiple targets. In this manner, WT DNA at numerous DNA regions can be digested simultaneously, thus enabling enhanced detection of mutations.

In an adaptation of the same approach in the field of methylation, a methylation-sensitive nuclease-assisted minor allele enrichment, MS-NaME, was developed. Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as cfDNA, are potentially powerful prognostic and predictive cancer biomarkers. During MS-NaME, oligonucleotide probes targeting unmethylated sequences in bisulfite-treated DNA generate local double-stranded regions resulting in digestion of unmethylated targets and leaving methylated targets intact (or vice versa), thereby leading to selective enrichment of differentially methylated or unmethylated DNA targets that can be used for downstream methylation detection assays.

Finally, application of MSI-NaME-PrO to enrich indels at microsatellites and to enhance sensitivity for detection of microsatellite instability MSI is also described. NaME-PrO, MS-NaME, and MSI-NaME-PrO provide a simple, low-cost, broad application platform that can be applied at the genomic DNA level prior to DNA amplification and combines well with existing genotyping approaches. Applications in liquid biopsy-based diagnostics using circulating DNA are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Wang, L., Mamon, H., Kulke, M.H., Berbeco, R. and Makrigiorgos, G.M. (2008) Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med, 14, 579-584.

    Article  CAS  PubMed  Google Scholar 

  2. Li, J., Milbury, C.A., Li, C. and Makrigiorgos, G.M. (2009) Two-round coamplification at lower denaturation temperature-PCR (COLD-PCR)-based sanger sequencing identifies a novel spectrum of low-level mutations in lung adenocarcinoma. Hum Mutat, 30, 1583-1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murphy, D.M., Bejar, R., Stevenson, K., Neuberg, D., Shi, Y., Cubrich, C., Richardson, K., Eastlake, P., Garcia-Manero, G., Kantarjian, H. et al. (2013) NRAS mutations with low allele burden have independent prognostic significance for patients with lower risk myelodysplastic syndromes. Leukemia, 27, 2077-2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Misale, S., Yaeger, R., Hobor, S., Scala, E., Janakiraman, M., Liska, D., Valtorta, E., Schiavo, R., Buscarino, M., Siravegna, G. et al. (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature, 486, 532-536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diaz, L.A., Jr., Williams, R.T., Wu, J., Kinde, I., Hecht, J.R., Berlin, J., Allen, B., Bozic, I., Reiter, J.G., Nowak, M.A. et al. (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature, 486, 537-540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuang, Y., Rogers, A., Yeap, B.Y., Wang, L., Makrigiorgos, M., Vetrand, K., Thiede, S., Distel, R.J. and Janne, P.A. (2009) Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res, 15, 2630-2636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taniguchi, K., Uchida, J., Nishino, K., Kumagai, T., Okuyama, T., Okami, J., Higashiyama, M., Kodama, K., Imamura, F. and Kato, K. (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res, 17, 7808-7815.

    Article  CAS  PubMed  Google Scholar 

  8. Girotti, M.R., Gremel, G., Lee, R., Galvani, E., Rothwell, D., Viros, A., Mandal, A.K., Lim, K.H., Saturno, G., Furney, S.J. et al. (2016) Application of Sequencing, Liquid Biopsies, and Patient- Derived Xenografts for Personalized Medicine in Melanoma. Cancer Discov, 6, 286-299.

    Article  CAS  PubMed  Google Scholar 

  9. Thress, K.S., Paweletz, C.P., Felip, E., Cho, B.C., Stetson, D., Dougherty, B., Lai, Z., Markovets, A., Vivancos, A., Kuang, Y. et al. (2015) Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med, 21, 560-562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oxnard, G.R., Paweletz, C.P., Kuang, Y., Mach, S.L., O’Connell, A., Messineo, M.M., Luke, J.J., Butaney, M., Kirschmeier, P., Jackman, D.M. et al. (2014) Noninvasive Detection of Response and Resistance in EGFR-Mutant Lung Cancer Using Quantitative Next-Generation Genotyping of Cell-Free Plasma DNA. Clin Cancer Res.

    Google Scholar 

  11. Schwaederle, M., Husain, H., Fanta, P.T., Piccioni, D.E., Kesari, S., Schwab, R.B., Patel, S.P., Harismendy, O., Ikeda, M., Parker, B.A. et al. (2016) Use of Liquid Biopsies in Clinical Oncology: Pilot Experience in 168 Patients. Clin Cancer Res.

    Google Scholar 

  12. Thierry, A.R., Mouliere, F., El Messaoudi, S., Mollevi, C., Lopez-Crapez, E., Rolet, F., Gillet, B., Gongora, C., Dechelotte, P., Robert, B. et al. (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med, 20, 430-435.

    Article  CAS  PubMed  Google Scholar 

  13. Dawson, S.J., Tsui, D.W., Murtaza, M., Biggs, H., Rueda, O.M., Chin, S.F., Dunning, M.J., Gale, D., Forshew, T., Mahler-Araujo, B. et al. (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med, 368, 1199-1209.

    Article  CAS  PubMed  Google Scholar 

  14. Parsons, H.A., Rhoades, J., Reed, S.C., Gydush, G., Ram, P., Exman, P., Xiong, K., Lo, C.C., Li, T., Fleharty, M. et al. (2020) Sensitive Detection of Minimal Residual Disease in Patients Treated for Early-Stage Breast Cancer. Clin Cancer Res.

    Google Scholar 

  15. Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S., Kinde, I., Silliman, N., Tacey, M., Wong, H.L., Christie, M. et al. (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med, 8, 346ra392.

    Article  Google Scholar 

  16. Roschewski, M., Dunleavy, K., Pittaluga, S., Moorhead, M., Pepin, F., Kong, K., Shovlin, M., Jaffe, E.S., Staudt, L.M., Lai, C. et al. (2015) Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol, 16, 541- 549.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leon, S.A., Shapiro, B., Sklaroff, D.M. and Yaros, M.J. (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res, 37, 646-650.

    CAS  PubMed  Google Scholar 

  18. Vandeputte, C., Kehagias, P., El Housni, H., Ameye, L., Laes, J.F., Desmedt, C., Sotiriou, C., Deleporte, A., Puleo, F., Geboes, K. et al. (2018) Circulating tumor DNA in early response assessment and monitoring of advanced colorectal cancer treated with a multi-kinase inhibitor. Oncotarget, 9, 17756-17769.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bronkhorst, A.J., Ungerer, V. and Holdenrieder, S. (2019) The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif, 17, 100087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lo, Y.M., Leung, S.F., Chan, L.Y., Chan, A.T., Lo, K.W., Johnson, P.J. and Huang, D.P. (2000) Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res, 60, 2351-2355.

    CAS  PubMed  Google Scholar 

  21. Kassis, A.I., Wen, P.Y., Van den Abbeele, A.D., Baranowska-Kortylewicz, J., Makrigiorgos, G.M., Metz, K.R., Matalka, K.Z., Cook, C.U., Sahu, S.K., Black, P.M. et al. (1998) 5-[125I]iodo-2’- deoxyuridine in the radiotherapy of brain tumors in rats. J Nucl Med, 39, 1148-1154.

    CAS  PubMed  Google Scholar 

  22. Makrigiorgos, G.M., Berman, R.M., Baranowska-Kortylewicz, J., Bump, E., Humm, J.L., Adelstein, S.J. and Kassis, A.I. (1992) DNA damage produced in V79 cells by DNA-incorporated iodine-123: a comparison with iodine-125. Radiat Res, 129, 309-314.

    Article  CAS  PubMed  Google Scholar 

  23. Makrigiorgos, G.M., Adelstein, S.J. and Kassis, A.I. (1990) Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates. Jama, 264, 592-595.

    Article  CAS  PubMed  Google Scholar 

  24. Makrigiorgos, G., Adelstein, S.J. and Kassis, A.I. (1990) Auger electron emitters: insights gained from in vitro experiments. Radiat Environ Biophys, 29, 75-91.

    Article  CAS  PubMed  Google Scholar 

  25. Makrigiorgos, G.M., Ito, S., Baranowska-Kortylewicz, J., Vinter, D.W., Iqbal, A., Van den Abbeele, A.D., Adelstein, S.J. and Kassis, A.I. (1990) Inhomogeneous deposition of radiopharmaceuticals at the cellular level: experimental evidence and dosimetric implications. J Nucl Med, 31, 1358- 1363.

    CAS  PubMed  Google Scholar 

  26. Diehl, F., Schmidt, K., Choti, M.A., Romans, K., Goodman, S., Li, M., Thornton, K., Agrawal, N., Sokoll, L., Szabo, S.A. et al. (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med, 14, 985-990.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, R.K., Nickerson, E., Simons, J.F., Janne, P.A., Tengs, T., Yuza, Y., Garraway, L.A., Laframboise, T., Lee, J.C., Shah, K. et al. (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med, 12, 852-855.

    Article  CAS  PubMed  Google Scholar 

  28. Milbury, C.A., Correll, M., Quackenbush, J., Rubio, R. and Makrigiorgos, G.M. (2012) COLD-PCR enrichment of rare cancer mutations prior to targeted amplicon resequencing. Clin Chem, 58, 580-589.

    Article  CAS  PubMed  Google Scholar 

  29. Gray, J. (2010) Cancer: Genomics of metastasis. Nature, 464, 989-990.

    Article  CAS  PubMed  Google Scholar 

  30. Tang, S. and Huang, T. Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotechniques, 48, 287-296.

    Google Scholar 

  31. Qin, W., Kozlowski, P., Taillon, B.E., Bouffard, P., Holmes, A.J., Janne, P., Camposano, S., Thiele, E., Franz, D. and Kwiatkowski, D.J. Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet, 127, 573-582.

    Google Scholar 

  32. Newman, A.M., Bratman, S.V., To, J., Wynne, J.F., Eclov, N.C., Modlin, L.A., Liu, C.L., Neal, J.W., Wakelee, H.A., Merritt, R.E. et al. (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med, 20, 548-554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newman, A.M., Lovejoy, A.F., Klass, D.M., Kurtz, D.M., Chabon, J.J., Scherer, F., Stehr, H., Liu, C.L., Bratman, S.V., Say, C. et al. (2016) Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol, 34, 547-555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K.W. and Vogelstein, B. (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A, 108, 9530-9535.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schmitt, M.W., Kennedy, S.R., Salk, J.J., Fox, E.J., Hiatt, J.B. and Loeb, L.A. (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A, 109, 14508-14513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narayan, A., Carriero, N.J., Gettinger, S.N., Kluytenaar, J., Kozak, K.R., Yock, T.I., Muscato, N.E., Ugarelli, P., Decker, R.H. and Patel, A.A. (2012) Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res, 72, 3492-3498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forshew, T., Murtaza, M., Parkinson, C., Gale, D., Tsui, D.W., Kaper, F., Dawson, S.J., Piskorz, A.M., Jimenez-Linan, M., Bentley, D. et al. (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med, 4, 136ra168.

    Article  Google Scholar 

  38. Lou, D.I., Hussmann, J.A., McBee, R.M., Acevedo, A., Andino, R., Press, W.H. and Sawyer, S.L. (2013) High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Natl Acad Sci U S A, 110, 19872-19877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmitt, M.W., Kennedy, S.R., Salk, J.J., Fox, E.J., Hiatt, J.B. and Loeb, L.A. (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A.

    Google Scholar 

  40. Gregory, M.T., Bertout, J.A., Ericson, N.G., Taylor, S.D., Mukherjee, R., Robins, H.S., Drescher, C.W. and Bielas, J.H. (2016) Targeted single molecule mutation detection with massively parallel sequencing. Nucleic Acids Res, 44, e22.

    Article  PubMed  Google Scholar 

  41. Jee, J., Rasouly, A., Shamovsky, I., Akivis, Y., S, R.S., Mishra, B. and Nudler, E. (2016) Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing. Nature.

    Google Scholar 

  42. Wan, J.C.M., Heider, K., Gale, D., Murphy, S., Fisher, E., Mouliere, F., Ruiz-Valdepenas, A., Santonja, A., Morris, J., Chandrananda, D. et al. (2020) ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med, 12.

    Google Scholar 

  43. McDonald, B.R., Contente-Cuomo, T., Sammut, S.-J., Odenheimer-Bergman, A., Ernst, B., Perdigones, N., Chin, S.-F., Farooq, M., Mejia, R., Cronin, P.A. et al. (2019) Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Science Translational Medicine, 11, eaax7392.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Milbury, C.A., Li, J. and Makrigiorgos, G.M. (2009) PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem, 55, 632-640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galbiati, S., Brisci, A., Lalatta, F., Seia, M., Makrigiorgos, G.M., Ferrari, M. and Cremonesi, L. (2011) Full COLD-PCR protocol for noninvasive prenatal diagnosis of genetic diseases. Clin Chem, 57, 136-138.

    Article  CAS  PubMed  Google Scholar 

  46. Song, C., Liu, Y., Fontana, R., Makrigiorgos, A., Mamon, H., Kulke, M.H. and Makrigiorgos, G.M. (2016) Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res, 44, e146.

    PubMed  PubMed Central  Google Scholar 

  47. Ladas, I., Fitarelli-Kiehl, M., Song, C., Adalsteinsson, V.A., Parsons, H.A., Lin, N.U., Wagle, N. and Makrigiorgos, G.M. (2017) Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies. Clin Chem, 63, 1605-1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Markou, A., Tzanikou, E., Ladas, I., Makrigiorgos, G.M. and Lianidou, E. (2019) Nuclease-Assisted Minor Allele Enrichment Using Overlapping Probes-Assisted Amplification-Refractory Mutation System: An Approach for the Improvement of Amplification-Refractory Mutation System- Polymerase Chain Reaction Specificity in Liquid Biopsies. Anal Chem, 91, 13105-13111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Y., Song, C., Ladas, I., Fitarelli-Kiehl, M. and Makrigiorgos, G.M. (2017) Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease. Nucleic Acids Res, 45, e39.

    Article  PubMed  Google Scholar 

  50. Ladas, I., Yu, F., Leong, K.W., Fitarelli-Kiehl, M., Song, C., Ashtaputre, R., Kulke, M., Mamon, H. and Makrigiorgos, G.M. (2018) Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res, 46, e74.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shagin, D.A., Rebrikov, D.V., Kozhemyako, V.B., Altshuler, I.M., Shcheglov, A.S., Zhulidov, P.A., Bogdanova, E.A., Staroverov, D.B., Rasskazov, V.A. and Lukyanov, S. (2002) A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res, 12, 1935-1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leong, K.W., Yu, F., Adalsteinsson, V.A., Reed, S., Gydush, G., Ladas, I., Li, J., Tantisira, K.G. and Makrigiorgos, G.M. (2019) A nuclease-polymerase chain reaction enables amplification of probes used for capture-based DNA target enrichment. Nucleic Acids Res, 47, e147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baudrin, L.G., Duval, A., Daunay, A., Buhard, O., Bui, H., Deleuze, J.F. and How-Kit, A. (2018) Improved Microsatellite Instability Detection and Identification by Nuclease-Assisted Microsatellite Instability Enrichment Using HSP110 T17. Clin Chem, 64, 1252-1253.

    Article  PubMed  Google Scholar 

  54. Amicarelli, G., Shehi, E., Makrigiorgos, G.M. and Adlerstein, D. (2007) FLAG assay as a novel method for real-time signal generation during PCR: application to detection and genotyping of KRAS codon 12 mutations. Nucleic Acids Res, 35, e131.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baudrin, L.G., Deleuze, J.F. and How-Kit, A. (2018) Molecular and Computational Methods for the Detection of Microsatellite Instability in Cancer. Front Oncol, 8, 621.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yu, F., Leong, K.W., Makrigiorgos, A., Adalsteinsson, V.A., Ladas, I., Ng, K., Mamon, H. and Makrigiorgos, G.M. (2020) NGS-based identification and tracing of microsatellite instability from minute amounts DNA using inter-Alu-PCR. Nucleic Acids Res.

    Google Scholar 

  57. Wang, F., Wang, L., Briggs, C., Sicinska, E., Gaston, S.M., Mamon, H., Kulke, M.H., Zamponi, R., Loda, M., Maher, E. et al. (2007) DNA Degradation Test Predicts Success in Whole-Genome Amplification from Diverse Clinical Samples. J Mol Diagn, 9, 441-451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the National Institutes of Health grants R33 CA217652 and R01 CA221874. The contents of this manuscript do not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mike Makrigiorgos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leong, K.W., Yu, F., Makrigiorgos, G.M. (2023). Minor Allele Enrichment in Liquid Biopsies Using Nuclease-Assisted Elimination of Wild-Type DNA. In: Cote, R.J., Lianidou, E. (eds) Circulating Tumor Cells. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-031-22903-9_2

Download citation

Publish with us

Policies and ethics