Abstract
Usually when noise effects are considered with respect to well-being and health, A-weighted sound pressure level indicators are analyzed. However, several decades ago researchers started to use measurement methods to quantify auditory sensations in more detail. Later the soundscape pioneer Murray Schafer described acoustics and psychoacoustics as the cornerstones to understanding the physical properties of sound and the way sound is perceived. This approach emphasized that all aspects of soundscape are related to perception. Psychoacoustic data are considered for a more comprehensive evaluation of acoustic environments that goes beyond the simplified use of sound level indicators. Moreover, a key consideration is that acoustic environments are perceived binaurally by humans. Thus, measurement equipment that collects spatial information about the acoustic environments is increasingly being applied in soundscape investigations and consequently is suggested in soundscape standards. Following the soundscape concept, all measurements and analyses must reflect the way soundscape is perceived by people in the appropriate context. This insight led to an increase in research and applications of psychoacoustic measurements to understand the effects of acoustic environments on humans in more detail. Although the general value of psychoacoustics is broadly acknowledged in soundscape research, several research questions remain that must be addressed to fully understand the relevance of psychoacoustic properties in different environments and contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aletta F, Kang J (2016) Descriptors and indicators for soundscape design: vibrancy as an example. Internoise, Hamburg
Aletta F, Kang J (2018) Towards an urban vibrancy model: a soundscape approach. Int J Environ Res Public Health 15(8):1712. https://doi.org/10.3390/ijerph15081712
ANSI S3.4 2007 Procedure for the computation of loudness of steady sounds
Aures W (1985) Berechnungsverfahren für den sensorischen Wohlklang beliebiger Schallsignale. Acta Acust Acust 59:130–141
Becker J, Sottek R, Lobato T (2019) Progress in tonality calculation. In: ICA 2019, Aachen
Berglund B, Nilsson ME (2006) On a tool for measuring soundscape quality in urban residential areas. Acta Acust Acust 92(6):938–944
Blauert J (1974) Räumliches Hören. Hirzel, Stuttgart
Blauert J (1996) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge
Blauert J, Jekosch U (1997) Sound-quality evaluation – a multi-layered problem. Acta Acust Acust 83(5):747–753
Brambilla G, Maffei L, Gabriele M, Gallo V (2013) Merging physical parameters and laboratory subjective ratings for the soundscape assessment of urban squares. J Acoust Soc Am 134:782–790. https://doi.org/10.1121/1.4768792
Bray WR (2007) Behavior of psychoacoustic measurements with time-varying signals. In: Noise-Con 2007, Reno
Bronkhorst AW, Plump R (1988) The effect of head-induced interaural time and level differences on speech intelligibility in noise. J Acoust Soc Am 83(4):1508–1516. https://doi.org/10.1121/1.395906
Çakır Aydın D, Yılmaz S (2016) Assessment of sound environment pleasantness by sound quality metrics in urban spaces. TU A|Z J Fac Archit 13(2):87–99
Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25(5):975–979
Davis WJ, Bruce NS, Murphy JE (2014) Soundscape reproduction and synthesis. Acta Acust Acust 100(2):285–292
Coensel de B, Botteldooren D (2010) A model of saliency-based auditory attention to environmental sound. In: Proceedings of international congress on acoustics 2010, Sydney, Australia
DIN 45631/A1 (2010) Calculation of loudness level and loudness from the sound spectrum – Zwicker method – amendment 1: calculation of the loudness of time-variant sound. Beuth Verlag, Berlin
DIN 45692 (2009) Measurement technique for the simulation of the auditory sensation of sharpness. Beuth Verlag, Berlin
ECMA (2019) ECMA-74 – measurement of airborne noise emitted by information technology and telecommunications equipment, Geneva
ECMA-418-2 (2020) Psychoacoustic metrics for ITT-equipment, part 2: models based on human perception, Geneva
Engel MS, Fiebig A, Pfaffenbach C, Fels J (2021) A review of the use of psychoacoustic indicators on soundscape studies. Curr Pollution Rep 7:359. https://doi.org/10.1007/s40726-021-00197-1
Fastl H (1991) Beurteilung und Messung der äquivalenten Dauerlautheit, Z. f. Lärmbekämpf, vol 38. Springer, pp 98–103. Düsseldorf, Germany
Fastl H, Zwicker E (2007) Psychoacoustics. Springer, Berlin
Fay RR, Popper AN (2005) Introduction to sound source localization. In: Popper AN, Fay RR (eds) Sound source localization, Springer handbook of auditory research, vol 25. Springer, New York. https://doi.org/10.1007/0-387-28863-5_1
Fidell S (2003) The Schultz curve 25 years later: a research perspective. J Acoust Soc Am 114(6):3007–3015
Fiebig A (2015) Cognitive stimulus integration in the context of auditory sensations and sound perceptions (Dissertation), Technische Universität Berlin, epubli, Berlin
Fiebig A, Genuit K (2011) Applicability of the soundscape approach in the legal context. In: DAGA 2011, Düsseldorf, Germany
Flanagan JL, Watson BJ (1966) Binaural unmasking of complex signals. J Acoust Soc Am 40:456–468. https://doi.org/10.1121/1.1910096
Galbrun L, Ali TT (2012) Perceptual assessment of water sounds for road traffic noise masking. In: Acoustics 2012, Nantes
Genuit K (1984) Ein Modell zur Beschreibung der Außenohrübertragungseigenschaften. TH Aachen, Aachen
Genuit K (1992a) Sound quality, sound comfort, sound design—why use artificial head measurement technology? In: Daimler-Benz JRC (ed) Stuttgart
Genuit K (1992b) Standardization of binaural measurment technique. J Phys IV Proc 02:C1-405–C1-407. https://doi.org/10.1051/jp4:1992187
Genuit K (1996) Objective evaluation of acoustic quality based on a relative approach. In: Internoise 1996, Liverpool, pp 3233–3238
Genuit K (2002) Sound quality aspects for environmental noise. In: Internoise 2002, Dearborn, pp 1242–1247
Genuit K (2003) How to evaluate noise impact. In: Euronoise 2003, Naples, pp 1–4
Genuit K (2006) Beyond the a-weighted level. In: Internoise 2006. Honolulu, pp 1321–1327
Genuit K (2018) Standardization of soundscape: request of binaural recording. In: Proceedings of Euronoise, pp 2451–2458
Genuit K, Fiebig A (2006) Psychoacoustics and its benefit for the soundscape approach. Acta Acust Acust 92:1–7
Genuit K, Fiebig A (2007) Environmental noise: is there any significant influence on animals? J Acoust Soc Am 122:3082. https://doi.org/10.1121/1.2943007
Genuit K, Fiebig A (2014) The measurement of soundscapes – it it standardizable? In: Internoise 2014, pp 3502–3510
Genuit K, Sottek R (2010) Das menschliche Gehör und Grundlagen der Psychoakustik. In: Genuit K (ed) Sound-Engineering im Automobilbereich. Springer, Berlin, ISBN: 978-3-642-01415-4
Genuit K, Schulte-Fortkamp B, Fiebig A (2008) Psychoacoustic mapping within the soundscape approach. In: Internoise 2008, Proceeding, Shanghai, China
Glasberg BR, Moore BCJ (2006) Prediction of absolute thresholds and equal-loudness contours using a modified loudness model. J Acoust Soc Am 120:585–588. https://doi.org/10.1121/1.2214151
Guastavino C, Katz BFG, Polack JD, Levitin DJ, Dubois D (2005) Ecological validity of soundscape reproduction. Acta Acust Acust 91(2):333–341
Hellman R, Zwicker E (1987) Why can a decrease in dB(a) produce an increase in loudness? J Acoust Soc Am 82:1700–1705. https://doi.org/10.1121/1.395162
Hermida Cadena LF, Lobo Soares AC, Pavón I, Bento Coelho JL (2017) Assessing soundscape: comparison between in situ and laboratory methodologies. Noise Mapp 4:57–66. https://doi.org/10.1515/noise-2017-0004
Hong JY, Jeon, JY (2017) Exploring spatial relationships among soundscape variables in urban areas: a spatial statistical modelling approach. Landsc Urban Plan 157:352–353
Hong JY, Jianjun H, Bhan L, Rishabh G, Woon-Seng G (2017) Spatial audio for soundscape design:recording and reproduction. Appl Sci 2017(7):627
IEC 959 (1990) Provisional head and torso simulator for acoustic measurements on air conduction hearing aids
ISO 532-1 (2017) Acoustics—methods for calculating loudness—part 1: Zwicker method, Geneva
ISO 532-2 (2017) Acoustics—methods for calculating loudness—part 2: Moore-Glasberg method. Geneva
ISO 12913-1 (2014) Acoustics — Soundscape —Part 1: Definition and conceptual framework, Geneva
ISO 1996-1 (2016) Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures, Geneva
ISO 1996-2 (2017) Acoustics — Description, measurement and assessment of environmental noise — Part 2: Determination of sound pressure levels, Geneva
ISO/TS 12913-2 (2018) Acoustics — Soundscape — Part 2: Data collection and reporting requirements, Geneva
ISO/TS 12913-3 (2019) Acoustics — Soundscape — Part 3: Data analysis, Geneva
Jansen G, Rey P-Y (1962) Der Einfluss der Bandbreite eines Geräusches auf die Stärke vegetativer Reaktionen. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie 19:209–217. https://doi.org/10.1007/BF00697117
Kang J, Schulte-Fortkamp B, Fiebig A, Botteldooren D (2016) Mapping of soundscape, In: Kang J, Schulte-Fortkamp B (ed.) Soundscape and the built environment. Taylor & Francis incorporating Spon, London
Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78. https://doi.org/10.1146/annurev.neuro.30.051606.094256
Lionello M, Aletta F, Kang J (2020) A systematic review of prediction models for the experience of urban soundscapes. Appl Acoust 170:107479
Montoya-Belmonte J, Navarro JM (2020) Long-term temporal analysis of psychoacoustic parameters of the acoustic environment in an university campus using a wireless acoustic sensor network. Sustainability 2020(12):7406. https://doi.org/10.3390/su12187406
Moore BCJ, Glasberg BR, Baer T (1997) A model for the prediction of thresholds, loudness, and partial loudness. J Audio Eng Soc 45:224–240
San Martín R, Arana M, Ezcurra A, Valencia A (2019) Influence of recording technology on the determination of binaural psychoacoustic indicators in soundscape investigations. In: Proceedings Internoise, Madrid, Spain 2019
Schafer RM (1994) The soundscape: our sonic environment and the tuning of the world. Destiny Books
Schulte-Fortkamp B, Nitsch W (1999) On soundscapes and their meaning regarding noise annoyance measurements. In: Internoise 1999, Fort Lauderdale, Florida
Schultz TJ (1978) Synthesis of social surveys on noise annoyance. J Acoust Soc Am 852–861(64):377–405
Shaw E (1997) In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum, Mahwah, pp 25–48
Sottek R (1993) Modelle zur Signalverarbeltung im menschlichen Gehör. RWTH, Aachen
Stemplinger IM (1999) Beurteilung, Messung und Prognose der Globalen Lautheit von Geräuschimmissionen. Technische Universität München
Sun K, Botteldooren D, De Coensel B (2018) Realism and immersion in the reproduction of audio-visual recordings for urban soundscape evaluation. In: Proceedings of the 47th international congress and exposition on noise control engineering, Chicago, USA
vom Hövel H (1984) Zur Bedeutung der Übertragungseigenschaften des Aussenohrs sowie des binauralen Hörsystems bei gestörter Sprachübertragung. RWTH, Aachen
von Bismarck G (1974) Sharpness as an attribute of the timbre of steady sounds. Acta Acust Acust 30:159–172
World Health Organization (2014) Burden of disease from environmental noise. In: Quantification of healthy life years lost in Europe. WHO Regional Office for Europe, Bonn, ISBN 978 92 89002295
Yang M (2019) Prediction model of soundscape assessment based on semantic and acoustic/psychoacoustic factors. J Acoust Soc Am 145:1753–1753. https://doi.org/10.1121/1.5101420
Zwicker E (1958) Über psychologische und methodische Grundlagen der Lautheit. Acustica 8:237–258
Zwicker E (1982) Psychoakustik. Springer
Zwicker E, Flottorp G, Stevens SS (1957) Critical band width in loudness summation. J Acoust Soc Am 29:548–557. https://doi.org/10.1121/1.1908963
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Genuit, K., Schulte-Fortkamp, B., Fiebig, A. (2023). Psychoacoustics in Soundscape Research. In: Schulte-Fortkamp, B., Fiebig, A., Sisneros, J.A., Popper, A.N., Fay, R.R. (eds) Soundscapes: Humans and Their Acoustic Environment. Springer Handbook of Auditory Research, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-031-22779-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-22779-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22778-3
Online ISBN: 978-3-031-22779-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)