Skip to main content

Psychoacoustics in Soundscape Research

  • Chapter
  • First Online:
Soundscapes: Humans and Their Acoustic Environment

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 76))

Abstract

Usually when noise effects are considered with respect to well-being and health, A-weighted sound pressure level indicators are analyzed. However, several decades ago researchers started to use measurement methods to quantify auditory sensations in more detail. Later the soundscape pioneer Murray Schafer described acoustics and psychoacoustics as the cornerstones to understanding the physical properties of sound and the way sound is perceived. This approach emphasized that all aspects of soundscape are related to perception. Psychoacoustic data are considered for a more comprehensive evaluation of acoustic environments that goes beyond the simplified use of sound level indicators. Moreover, a key consideration is that acoustic environments are perceived binaurally by humans. Thus, measurement equipment that collects spatial information about the acoustic environments is increasingly being applied in soundscape investigations and consequently is suggested in soundscape standards. Following the soundscape concept, all measurements and analyses must reflect the way soundscape is perceived by people in the appropriate context. This insight led to an increase in research and applications of psychoacoustic measurements to understand the effects of acoustic environments on humans in more detail. Although the general value of psychoacoustics is broadly acknowledged in soundscape research, several research questions remain that must be addressed to fully understand the relevance of psychoacoustic properties in different environments and contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aletta F, Kang J (2016) Descriptors and indicators for soundscape design: vibrancy as an example. Internoise, Hamburg

    Google Scholar 

  • Aletta F, Kang J (2018) Towards an urban vibrancy model: a soundscape approach. Int J Environ Res Public Health 15(8):1712. https://doi.org/10.3390/ijerph15081712

  • ANSI S3.4 2007 Procedure for the computation of loudness of steady sounds

    Google Scholar 

  • Aures W (1985) Berechnungsverfahren für den sensorischen Wohlklang beliebiger Schallsignale. Acta Acust Acust 59:130–141

    Google Scholar 

  • Becker J, Sottek R, Lobato T (2019) Progress in tonality calculation. In: ICA 2019, Aachen

    Google Scholar 

  • Berglund B, Nilsson ME (2006) On a tool for measuring soundscape quality in urban residential areas. Acta Acust Acust 92(6):938–944

    Google Scholar 

  • Blauert J (1974) Räumliches Hören. Hirzel, Stuttgart

    Google Scholar 

  • Blauert J (1996) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge

    Book  Google Scholar 

  • Blauert J, Jekosch U (1997) Sound-quality evaluation – a multi-layered problem. Acta Acust Acust 83(5):747–753

    Google Scholar 

  • Brambilla G, Maffei L, Gabriele M, Gallo V (2013) Merging physical parameters and laboratory subjective ratings for the soundscape assessment of urban squares. J Acoust Soc Am 134:782–790. https://doi.org/10.1121/1.4768792

    Article  PubMed  Google Scholar 

  • Bray WR (2007) Behavior of psychoacoustic measurements with time-varying signals. In: Noise-Con 2007, Reno

    Google Scholar 

  • Bronkhorst AW, Plump R (1988) The effect of head-induced interaural time and level differences on speech intelligibility in noise. J Acoust Soc Am 83(4):1508–1516. https://doi.org/10.1121/1.395906

    Article  CAS  PubMed  Google Scholar 

  • Çakır Aydın D, Yılmaz S (2016) Assessment of sound environment pleasantness by sound quality metrics in urban spaces. TU A|Z J Fac Archit 13(2):87–99

    Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25(5):975–979

    Article  Google Scholar 

  • Davis WJ, Bruce NS, Murphy JE (2014) Soundscape reproduction and synthesis. Acta Acust Acust 100(2):285–292

    Article  Google Scholar 

  • Coensel de B, Botteldooren D (2010) A model of saliency-based auditory attention to environmental sound. In: Proceedings of international congress on acoustics 2010, Sydney, Australia

    Google Scholar 

  • DIN 45631/A1 (2010) Calculation of loudness level and loudness from the sound spectrum – Zwicker method – amendment 1: calculation of the loudness of time-variant sound. Beuth Verlag, Berlin

    Google Scholar 

  • DIN 45692 (2009) Measurement technique for the simulation of the auditory sensation of sharpness. Beuth Verlag, Berlin

    Google Scholar 

  • ECMA (2019) ECMA-74 – measurement of airborne noise emitted by information technology and telecommunications equipment, Geneva

    Google Scholar 

  • ECMA-418-2 (2020) Psychoacoustic metrics for ITT-equipment, part 2: models based on human perception, Geneva

    Google Scholar 

  • Engel MS, Fiebig A, Pfaffenbach C, Fels J (2021) A review of the use of psychoacoustic indicators on soundscape studies. Curr Pollution Rep 7:359. https://doi.org/10.1007/s40726-021-00197-1

    Article  Google Scholar 

  • Fastl H (1991) Beurteilung und Messung der äquivalenten Dauerlautheit, Z. f. Lärmbekämpf, vol 38. Springer, pp 98–103. Düsseldorf, Germany

    Google Scholar 

  • Fastl H, Zwicker E (2007) Psychoacoustics. Springer, Berlin

    Book  Google Scholar 

  • Fay RR, Popper AN (2005) Introduction to sound source localization. In: Popper AN, Fay RR (eds) Sound source localization, Springer handbook of auditory research, vol 25. Springer, New York. https://doi.org/10.1007/0-387-28863-5_1

    Chapter  Google Scholar 

  • Fidell S (2003) The Schultz curve 25 years later: a research perspective. J Acoust Soc Am 114(6):3007–3015

    Google Scholar 

  • Fiebig A (2015) Cognitive stimulus integration in the context of auditory sensations and sound perceptions (Dissertation), Technische Universität Berlin, epubli, Berlin

    Google Scholar 

  • Fiebig A, Genuit K (2011) Applicability of the soundscape approach in the legal context. In: DAGA 2011, Düsseldorf, Germany

    Google Scholar 

  • Flanagan JL, Watson BJ (1966) Binaural unmasking of complex signals. J Acoust Soc Am 40:456–468. https://doi.org/10.1121/1.1910096

    Article  Google Scholar 

  • Galbrun L, Ali TT (2012) Perceptual assessment of water sounds for road traffic noise masking. In: Acoustics 2012, Nantes

    Google Scholar 

  • Genuit K (1984) Ein Modell zur Beschreibung der Außenohrübertragungseigenschaften. TH Aachen, Aachen

    Google Scholar 

  • Genuit K (1992a) Sound quality, sound comfort, sound design—why use artificial head measurement technology? In: Daimler-Benz JRC (ed) Stuttgart

    Google Scholar 

  • Genuit K (1992b) Standardization of binaural measurment technique. J Phys IV Proc 02:C1-405–C1-407. https://doi.org/10.1051/jp4:1992187

    Article  Google Scholar 

  • Genuit K (1996) Objective evaluation of acoustic quality based on a relative approach. In: Internoise 1996, Liverpool, pp 3233–3238

    Google Scholar 

  • Genuit K (2002) Sound quality aspects for environmental noise. In: Internoise 2002, Dearborn, pp 1242–1247

    Google Scholar 

  • Genuit K (2003) How to evaluate noise impact. In: Euronoise 2003, Naples, pp 1–4

    Google Scholar 

  • Genuit K (2006) Beyond the a-weighted level. In: Internoise 2006. Honolulu, pp 1321–1327

    Google Scholar 

  • Genuit K (2018) Standardization of soundscape: request of binaural recording. In: Proceedings of Euronoise, pp 2451–2458

    Google Scholar 

  • Genuit K, Fiebig A (2006) Psychoacoustics and its benefit for the soundscape approach. Acta Acust Acust 92:1–7

    Google Scholar 

  • Genuit K, Fiebig A (2007) Environmental noise: is there any significant influence on animals? J Acoust Soc Am 122:3082. https://doi.org/10.1121/1.2943007

    Article  Google Scholar 

  • Genuit K, Fiebig A (2014) The measurement of soundscapes – it it standardizable? In: Internoise 2014, pp 3502–3510

    Google Scholar 

  • Genuit K, Sottek R (2010) Das menschliche Gehör und Grundlagen der Psychoakustik. In: Genuit K (ed) Sound-Engineering im Automobilbereich. Springer, Berlin, ISBN: 978-3-642-01415-4

    Chapter  Google Scholar 

  • Genuit K, Schulte-Fortkamp B, Fiebig A (2008) Psychoacoustic mapping within the soundscape approach. In: Internoise 2008, Proceeding, Shanghai, China

    Google Scholar 

  • Glasberg BR, Moore BCJ (2006) Prediction of absolute thresholds and equal-loudness contours using a modified loudness model. J Acoust Soc Am 120:585–588. https://doi.org/10.1121/1.2214151

    Article  PubMed  Google Scholar 

  • Guastavino C, Katz BFG, Polack JD, Levitin DJ, Dubois D (2005) Ecological validity of soundscape reproduction. Acta Acust Acust 91(2):333–341

    Google Scholar 

  • Hellman R, Zwicker E (1987) Why can a decrease in dB(a) produce an increase in loudness? J Acoust Soc Am 82:1700–1705. https://doi.org/10.1121/1.395162

    Article  CAS  PubMed  Google Scholar 

  • Hermida Cadena LF, Lobo Soares AC, Pavón I, Bento Coelho JL (2017) Assessing soundscape: comparison between in situ and laboratory methodologies. Noise Mapp 4:57–66. https://doi.org/10.1515/noise-2017-0004

    Article  Google Scholar 

  • Hong JY, Jeon, JY (2017) Exploring spatial relationships among soundscape variables in urban areas: a spatial statistical modelling approach. Landsc Urban Plan 157:352–353

    Google Scholar 

  • Hong JY, Jianjun H, Bhan L, Rishabh G, Woon-Seng G (2017) Spatial audio for soundscape design:recording and reproduction. Appl Sci 2017(7):627

    Article  Google Scholar 

  • IEC 959 (1990) Provisional head and torso simulator for acoustic measurements on air conduction hearing aids

    Google Scholar 

  • ISO 532-1 (2017) Acoustics—methods for calculating loudness—part 1: Zwicker method, Geneva

    Google Scholar 

  • ISO 532-2 (2017) Acoustics—methods for calculating loudness—part 2: Moore-Glasberg method. Geneva

    Google Scholar 

  • ISO 12913-1 (2014) Acoustics — Soundscape —Part 1: Definition and conceptual framework, Geneva

    Google Scholar 

  • ISO 1996-1 (2016) Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures, Geneva

    Google Scholar 

  • ISO 1996-2 (2017) Acoustics — Description, measurement and assessment of environmental noise — Part 2: Determination of sound pressure levels, Geneva

    Google Scholar 

  • ISO/TS 12913-2 (2018) Acoustics — Soundscape — Part 2: Data collection and reporting requirements, Geneva

    Google Scholar 

  • ISO/TS 12913-3 (2019) Acoustics — Soundscape — Part 3: Data analysis, Geneva

    Google Scholar 

  • Jansen G, Rey P-Y (1962) Der Einfluss der Bandbreite eines Geräusches auf die Stärke vegetativer Reaktionen. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie 19:209–217. https://doi.org/10.1007/BF00697117

    Article  CAS  Google Scholar 

  • Kang J, Schulte-Fortkamp B, Fiebig A, Botteldooren D (2016) Mapping of soundscape, In: Kang J, Schulte-Fortkamp B (ed.) Soundscape and the built environment. Taylor & Francis incorporating Spon, London

    Google Scholar 

  • Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78. https://doi.org/10.1146/annurev.neuro.30.051606.094256

    Article  CAS  PubMed  Google Scholar 

  • Lionello M, Aletta F, Kang J (2020) A systematic review of prediction models for the experience of urban soundscapes. Appl Acoust 170:107479

    Article  Google Scholar 

  • Montoya-Belmonte J, Navarro JM (2020) Long-term temporal analysis of psychoacoustic parameters of the acoustic environment in an university campus using a wireless acoustic sensor network. Sustainability 2020(12):7406. https://doi.org/10.3390/su12187406

    Article  Google Scholar 

  • Moore BCJ, Glasberg BR, Baer T (1997) A model for the prediction of thresholds, loudness, and partial loudness. J Audio Eng Soc 45:224–240

    Google Scholar 

  • San Martín R, Arana M, Ezcurra A, Valencia A (2019) Influence of recording technology on the determination of binaural psychoacoustic indicators in soundscape investigations. In: Proceedings Internoise, Madrid, Spain 2019

    Google Scholar 

  • Schafer RM (1994) The soundscape: our sonic environment and the tuning of the world. Destiny Books

    Google Scholar 

  • Schulte-Fortkamp B, Nitsch W (1999) On soundscapes and their meaning regarding noise annoyance measurements. In: Internoise 1999, Fort Lauderdale, Florida

    Google Scholar 

  • Schultz TJ (1978) Synthesis of social surveys on noise annoyance. J Acoust Soc Am 852–861(64):377–405

    Article  Google Scholar 

  • Shaw E (1997) In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum, Mahwah, pp 25–48

    Google Scholar 

  • Sottek R (1993) Modelle zur Signalverarbeltung im menschlichen Gehör. RWTH, Aachen

    Google Scholar 

  • Stemplinger IM (1999) Beurteilung, Messung und Prognose der Globalen Lautheit von Geräuschimmissionen. Technische Universität München

    Google Scholar 

  • Sun K, Botteldooren D, De Coensel B (2018) Realism and immersion in the reproduction of audio-visual recordings for urban soundscape evaluation. In: Proceedings of the 47th international congress and exposition on noise control engineering, Chicago, USA

    Google Scholar 

  • vom Hövel H (1984) Zur Bedeutung der Übertragungseigenschaften des Aussenohrs sowie des binauralen Hörsystems bei gestörter Sprachübertragung. RWTH, Aachen

    Google Scholar 

  • von Bismarck G (1974) Sharpness as an attribute of the timbre of steady sounds. Acta Acust Acust 30:159–172

    Google Scholar 

  • World Health Organization (2014) Burden of disease from environmental noise. In: Quantification of healthy life years lost in Europe. WHO Regional Office for Europe, Bonn, ISBN 978 92 89002295

    Google Scholar 

  • Yang M (2019) Prediction model of soundscape assessment based on semantic and acoustic/psychoacoustic factors. J Acoust Soc Am 145:1753–1753. https://doi.org/10.1121/1.5101420

    Article  Google Scholar 

  • Zwicker E (1958) Über psychologische und methodische Grundlagen der Lautheit. Acustica 8:237–258

    Google Scholar 

  • Zwicker E (1982) Psychoakustik. Springer

    Book  Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical band width in loudness summation. J Acoust Soc Am 29:548–557. https://doi.org/10.1121/1.1908963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Genuit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Genuit, K., Schulte-Fortkamp, B., Fiebig, A. (2023). Psychoacoustics in Soundscape Research. In: Schulte-Fortkamp, B., Fiebig, A., Sisneros, J.A., Popper, A.N., Fay, R.R. (eds) Soundscapes: Humans and Their Acoustic Environment. Springer Handbook of Auditory Research, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-031-22779-0_6

Download citation

Publish with us

Policies and ethics