Skip to main content

An Optimal Human-Based Control Approach for Mobile Human-Robot Collaboration

  • Conference paper
  • First Online:
Human-Friendly Robotics 2022 (HFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 26))

Included in the following conference series:

Abstract

In collaborative robotic applications, human and robot have to cooperate in executing a common job. During the collaboration, the operator’s experience in the job is of paramount importance. Furthermore, it is essential to ensure that the two agents are always close enough to perform the assigned task, without jeopardizing the safety of the operator. In this paper, we propose an integrated architecture that allows the human operator to drive the collaboration based on its position. The robot is forced to stay close to the human during the execution of the task, but without colliding. Moreover the architecture is capable of changing online the size of the collaborative area, making it suitable for most of the collaborative jobs. The proposed approach is validated on a UR10e mobile manipulator which has been mounted on a MIR100 collaborative platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.optitrack.com/.

  2. 2.

    https://mathworks.com/products/matlab-coder.html.

References

  1. Zanchettin, A.M., Ceriani, N.M., Rocco, P., Ding, H., Matthias, B.: Safety in human–robot collaborative manufacturing environments: metrics and control. IEEE Trans. Autom. Sci. Eng. 13(2), 882–893 (2015)

    Article  Google Scholar 

  2. Lippi, M., Marino, A.: Human multi-robot safe interaction: A trajectory scaling approach based on safety assessment. IEEE Transactions on Control Systems Technology (2020)

    Google Scholar 

  3. Pupa, A., Arrfou, M., Andreoni, G., Secchi, C.: A safety-aware kinodynamic architecture for human–robot collaboration. IEEE Robot. Autom. Lett. 6(3), 4465–4471 (2021)

    Article  Google Scholar 

  4. Ferreira, C., Figueira, G., Amorim, P.: Scheduling human-robot teams in collaborative working cells. Int. J. Prod. Econ. 235, 108094 (2021), https://www.sciencedirect.com/science/article/pii/S0925527321000700

  5. Johannsmeier, L., Haddadin, S.: A hierarchical human–robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robot. Autom. Lett. 2(1), 41–48 (2016)

    Article  Google Scholar 

  6. Casalino, A., Zanchettin, A.M., Piroddi, L., Rocco, P.: Optimal scheduling of human-robot collaborative assembly operations with time petri nets. IEEE Trans. Autom. Sci. Eng. (2019)

    Google Scholar 

  7. Pupa, A., Talignani Landi, C., Bertolani, M., Secchi, C.: A dynamic architecture for task assignment and scheduling for collaborative robotic cells. In: Proceedings of the 13th International Workshop on Human-Friendly Robotics (2020)

    Google Scholar 

  8. Pupa, A., Van Dijk, W., Secchi, C.: A human-centered dynamic scheduling architecture for collaborative application. IEEE Robot. Autom. Lett. 6(3), 4736–4743 (2021)

    Article  Google Scholar 

  9. Rahman, S.M., Wang, Y.: Mutual trust-based subtask allocation for human-robot collaboration in flexible lightweight assembly in manufacturing. Mechatronics 54, 94–109 (2018)

    Article  Google Scholar 

  10. Awais, M., Henrich, D.: Human-robot collaboration by intention recognition using probabilistic state machines. In: 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010). pp. 75–80 (2010)

    Google Scholar 

  11. Li, Y., Ge, S.S.: Human–robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 19(3), 1007–1014 (2013)

    Article  Google Scholar 

  12. Yamamoto, Y., Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. In: [1992] Proceedings of the 31st IEEE Conference on Decision and Control. pp. 2643–2648. IEEE (1992)

    Google Scholar 

  13. Hu, C., Chen, W., Wang, J., Wang, H.: Optimal path planning for mobile manipulator based on manipulability and localizability. In: 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). pp. 638–643. IEEE (2016)

    Google Scholar 

  14. Varela-Aldás, J., Andaluz, V.H., Chicaiza, F.A.: Modelling and control of a mobile manipulator for trajectory tracking. In: 2018 International Conference on Information Systems and Computer Science (INCISCOS). pp. 69–74. IEEE (2018)

    Google Scholar 

  15. Avanzini, G.B., Zanchettin, A.M., Rocco, P.: Constrained model predictive control for mobile robotic manipulators. Robotica 36(1), 19–38 (2018)

    Article  Google Scholar 

  16. Khan, A.H., Li, S., Chen, D., Liao, L.: Tracking control of redundant mobile manipulator: an rnn based metaheuristic approach. Neurocomputing 400, 272–284 (2020)

    Article  Google Scholar 

  17. Thakar, S., Kabir, A., Bhatt, P.M., Malhan, R.K., Rajendran, P., Shah, B.C., Gupta, S.K.: Task assignment and motion planning for bi-manual mobile manipulation. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). pp. 910–915. IEEE (2019)

    Google Scholar 

  18. Karami, H., Darvish, K., Mastrogiovanni, F.: A task allocation approach for human-robot collaboration in product defects inspection scenarios. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). pp. 1127–1134. IEEE (2020)

    Google Scholar 

  19. Navarro, B., Cherubini, A., Fonte, A., Poisson, G., Fraisse, P.: A framework for intuitive collaboration with a mobile manipulator. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 6293–6298. IEEE (2017)

    Google Scholar 

  20. Gillini, G., Di Lillo, P., Arrichiello, F., Di Vito, D., Marino, A., Antonelli, G., Chiaverini, S.: A dual-arm mobile robot system performing assistive tasks operated via p300-based brain computer interface. Indus. Robot: Int. J. Robot. Res. Appl. (2020)

    Google Scholar 

  21. Chen, M., Liu, C., Du, G.: A human–robot interface for mobile manipulator. Intell. Serv. Robot. 11(3), 269–278 (2018)

    Article  Google Scholar 

  22. Zhou, H., Min, H., Lin, Y., Zhang, S.: A robot architecture of hierarchical finite state machine for autonomous mobile manipulator. In: International Conference on Intelligent Robotics and Applications. pp. 425–436. Springer (2017)

    Google Scholar 

  23. Benzi, F., Secchi, C.: An optimization approach for a robust and flexible control in collaborative applications. arXiv preprint arXiv:2103.03082 (2021)

  24. Ferraguti, F., Talignani Landi, C., Singletary, A., Lin, H.C., Ames, A., Secchi, C., Bonfe, M.: Safety and efficiency in robotics: the control barrier functions approach. IEEE Robot. Autom. Mag., pp. 2–14 (2022)

    Google Scholar 

  25. Sorour, M., Cherubini, A., Fraisse, P.: Motion control for steerable wheeled mobile manipulation. In: 2019 European Conference on Mobile Robots (ECMR). pp. 1–7. IEEE (2019)

    Google Scholar 

  26. Moon, S., Park, Y., Ko, D.W., Suh, I.H.: Multiple kinect sensor fusion for human skeleton tracking using kalman filtering. Int. J. Adv. Robot. Syst. 13(2), 65 (2016)

    Article  Google Scholar 

  27. Kofman, J., Wu, X., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Indus. Electron. 52(5), 1206–1219 (2005)

    Article  Google Scholar 

  28. Fan, J., Xu, W., Wu, Y., Gong, Y.: Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. 21(10), 1610–1623 (2010)

    Article  Google Scholar 

  29. Notomista, G., Egerstedt, M.: Constraint-driven coordinated control of multi-robot systems. In: 2019 American Control Conference (ACC). pp. 1990–1996. IEEE (2019)

    Google Scholar 

  30. Notomista, G., Mayya, S., Hutchinson, S., Egerstedt, M.: An optimal task allocation strategy for heterogeneous multi-robot systems. In: 2019 18th European Control Conference (ECC). pp. 2071–2076. IEEE (2019)

    Google Scholar 

  31. Ferraguti, F., Landi, C.T., Costi, S., Bonfè, M., Farsoni, S., Secchi, C., Fantuzzi, C.: Safety barrier functions and multi-camera tracking for human–robot shared environment. Robot. Auton. Syst. 124, 103388 (2020)

    Article  Google Scholar 

  32. d’Andréa Novel, B., Campion, G., Bastin, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Robot. Res. 14(6), 543–559 (1995)

    Article  MATH  Google Scholar 

  33. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  Google Scholar 

  34. Caccavale, F., Lippiello, V., Muscio, G., Pierri, F., Ruggiero, F., Villani, L.: Grasp planning and parallel control of a redundant dual-arm/hand manipulation system. Robotica 31(7), 1169–1194 (2013)

    Article  Google Scholar 

  35. Ferrari, D., Benzi, F., Secchi, C.: Bidirectional communication control for human–robot collaboration (2022), https://arxiv.org/abs/2206.05202

Download references

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 818087 (ROSSINI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pupa, A., Breveglieri, F., Secchi, C. (2023). An Optimal Human-Based Control Approach for Mobile Human-Robot Collaboration. In: Borja, P., Della Santina, C., Peternel, L., Torta, E. (eds) Human-Friendly Robotics 2022. HFR 2022. Springer Proceedings in Advanced Robotics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-22731-8_3

Download citation

Publish with us

Policies and ethics