Skip to main content

Simulation on the Slag Desulfurization During the LF Refining in a Gas-Blowing Ladle

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 620 Accesses

Abstract

A three-dimensional numerical model coupled the fluid-flow simulation and the reaction kinetics was established to study the evolution of the sulfur content in the molten steel. The VOF, k-ε, and DPM models were employed to simulate the fluid flow of three phases in the ladle furnace, including the steel, the slag, and the air. Reactions between the steel and the slag were considered in the simulation using a series of user defined functions. The steel-slag reactions had a significant effect on the sulfur content in the molten steel, resulting the continuous decrease of the sulfur content. The [S] content reduced from 0.077 wt% into 0.01 wt% in 50 min. The distribution of [S] in the molten steel was uneven, with the lowest near the steel-slag interface and the highest in the middle zone between the argon blowing point and the ladle wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maciejewski J (2015) The effects of sulfide inclusions on mechanical properties and failures of steel components. J Fail Anal Prev 15(2):169–178

    Article  Google Scholar 

  2. Weider C, Pichard C (1991) Effects of sulphur and inclusion morphology in friction welding of structural steels. Weld Int 5(5):369–377

    Article  Google Scholar 

  3. Shi C, Huang Y, Zhang J, Li J, Zheng X (2021) Review on desulfurization in electroslag remelting. Int J Miner Metall Mater 28(1):18–29

    Article  CAS  Google Scholar 

  4. Visuri VV, Vuolio T, Haas T, Fabritius T (2020) A review of modeling hot metal desulfurization. Steel Res Int 91(4):1900454

    Article  CAS  Google Scholar 

  5. Kang JG, Shin JH, Chung Y, Park JH (2017) Effect of slag chemistry on the desulfurization kinetics in secondary refining processes. Metall Mater Trans B 48(4):2123–2135

    Article  CAS  Google Scholar 

  6. Takahashi K, Utagawa K, Shibata H, Kitamura S, Kikuchi N, Kishimoto Y (2012) Influence of solid CaO and liquid slag on hot metal desulfurization. ISIJ Int 52(1):10–17

    Article  CAS  Google Scholar 

  7. Yang AF, Karasev A, Jönsson PG (2015) Characterization of metal droplets in slag after desulfurization of hot metal. ISIJ Int 55(3):570–577

    Article  CAS  Google Scholar 

  8. Cao Q, Pitts A, Nastac L (2018) Numerical modelling of fluid flow and desulphurisation kinetics in an argon-stirred ladle furnace. Ironmaking Steelmaking 45(3):280–287

    Article  CAS  Google Scholar 

  9. Fan W, Zhang J, Ao W, Huang J (2015) Effect of Al2O3 and CaF2 on melting temperature of high calcium ladle desulfurization slag. Adv Mater Res 1094:325–328

    Article  Google Scholar 

  10. Wang F, Tan J, Huang X, Wang Q, Liu Z, Baleta J, Li B (2022) Mathematical and numerical predictions of desulfurization behavior in the electromagnetically controlled vibrating-electrode electroslag remelting furnace. Metall Mater Trans B 53(3):1792–1805

    Article  CAS  Google Scholar 

  11. Uriostegui Hernandez A, Garnica Gonzalez P, Ramos Banderas JA, Solorio Diaz G, Hernandez Bocanegra CA (2022) Desulphurization kinetic prediction into a steel ladle by coupling thermodynamic correlations, fluidynamics and heat transfer. ISIJ Int 62(6):1189–1198

    Article  CAS  Google Scholar 

  12. Jonsson L, Sichen D, Jönsson P (1998) A new approach to model sulphur refining in a gas-stirred Ladle—a coupled CFD and thermodynamic model. ISIJ Int 38(3):260–267

    Article  CAS  Google Scholar 

  13. Andersson AMT, Jonsson LTI, Josson PG (2003) A model of reoxidation from the top slag and the effect on sulphur refining during vacuum degassing. Scand J Metall 32(3):123–136

    Article  CAS  Google Scholar 

  14. Lou W, Wang X, Liu Z, Luo S, Zhu M (2018) Numerical simulation of desulfurization behavior in ladle with bottom powder injection. ISIJ Int 58(11):2042–2051

    Article  CAS  Google Scholar 

  15. Lou W, Zhu M (2015) Numerical simulation of slag-metal reactions and desulfurization efficiency in gas-stirred ladles with different thermodynamics and kinetics. ISIJ Int 55(5):961–969

    Article  CAS  Google Scholar 

  16. Lou W, Zhu M (2014) numerical simulation of desulfurization behavior in gas-stirred systems based on computation fluid dynamics—simultaneous reaction model (CFDSRM) coupled model. Metall Mater Trans B 45(5):1706–1722

    Article  CAS  Google Scholar 

  17. Zhang Y, Ren Y, Zhang L (2017) Modeling transient evolution of inclusion in Si-Mn-killed steels during the ladle mixing process. Metall Res Technol 114(3):308

    Article  CAS  Google Scholar 

  18. Zhang Y, Ren Y, Zhang L (2018) Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metall Res Technol 115(4):1–7

    Article  Google Scholar 

  19. Wang J, Zhang L, Cheng G, Ren Q, Ren Y (2021) Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: laboratory experiments and mathematical prediction. Int J Miner Metall Mater 28(8):1298–1308

    Article  Google Scholar 

  20. Luo Y, Liu C, Ren Y, Zhang L (2018) Modeling on the fluid flow and mixing phenomena in a RH steel degasser with oval down-leg snorkel. Steel Res Int 89(12):1800048

    Google Scholar 

  21. Liu C, Li S, Zhang L (2018) Simulation of gas-liquid two-phase flow and mixing phenomena during RH refining process. Acta Metall Sin 54(2):347–356

    CAS  Google Scholar 

  22. Duan H (2016) Simulation on multiphase flow and mixing phenomena during ladle metallurgy process. In: The eighth China-Korea joint symposium on advanced steel technology, Chongqing, China, pp 55–62

    Google Scholar 

  23. Duan H, Ren Y, Zhang L (2019) Fluid flow, thermal stratification, and inclusion motion during holding period in steel ladles. Metall Mater Trans B 50(3):1476–1489

    Article  CAS  Google Scholar 

  24. Duan H, Zhang L, Thomas B, Conejo A (2018) Fluid flow, dissolution, and mixing phenomena in argon-stirred steel ladles. Metall Mater Trans B 49(5):2722–2743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation of China (Grant No. U1860206, No. 51725402, 51874031, 51874032), the S&T Program of Hebei (Grant No.20311004D), the High Steel Center (HSC) at North China University of Technology and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhang, Y., Lyu, B., Zhang, L. (2023). Simulation on the Slag Desulfurization During the LF Refining in a Gas-Blowing Ladle. In: Wagstaff, S., Anderson, A., Sabau, A.S. (eds) Materials Processing Fundamentals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22657-1_11

Download citation

Publish with us

Policies and ethics