Skip to main content

Solid-Phase Processing of Mg–Al–Mn–Ca for High Strength and Ductility

  • Conference paper
  • First Online:
Magnesium Technology 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

While rare-earth Mg alloys have remarkable properties for high strength applications, lower cost alternatives are necessary for the widespread industry use of Mg. Ca added Mg alloys have shown promise as an alternative to rare-earth alloys. Ca-based precipitates can reduce basal texture, reduce casting porosity, and increase mechanical strength of cast components. However, the accumulation of Ca-based precipitates along inter-dendritic regions can severely limit ductility. Here, we apply two solid-phase processing techniques, friction stir processing and shear assisted processing and extrusion, to produce wrought microstructure sheet and extruded tubes from a cast Mg–Al–Mn–Ca alloy. Ductility of the alloy is enhanced by densification under the applied thermomechanical processing conditions, grain refinement, and refinement of (Al, Mg)–Ca-based precipitates. Solid-phase processing provides a low cost opportunity to improve the properties of cast Mg alloys and improve service life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das S. (2003) Magnesium for automotive applications: Primary production cost assessment, JOM 55, 22–26. https://doi.org/10.1007/s11837-003-0204-x

    Article  Google Scholar 

  2. Horstemeyer M.F., Yang N., Gall K., McDowell D.L., Fan J., Gullett P.M. (2004) High cycle fatigue of a die cast AZ91E-T4 magnesium alloy, Acta Materialia 52, 1327–1336. https://doi.org/10.1016/j.actamat.2003.11.018

  3. Mayer H., Papakyriacou M., Zettl B., Stanzl-Tschegg S.E. (2003) Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys, International Journal of Fatigue 25, 245–256. https://doi.org/10.1016/S0142-1123(02)00054-3

  4. Niu X.P., Hu B.H., Pinwill I., Li H. (2000) Vacuum assisted high pressure die casting of aluminium alloys, Journal of Materials Processing Technology 105, 119–127. https://doi.org/10.1016/S0924-0136(00)00545-8

  5. Hantzsche K., Bohlen J., Wendt J., Kainer K.U., Yi S.B., Letzig D. (2010) Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Materialia 63, 725–730. https://doi.org/10.1016/j.scriptamat.2009.12.033

  6. García Gutiérrez I., Elduque D., Pina C., Tobajas R., Javierre C. (2020) Influence of the Composition on the Environmental Impact of a Casting Magnesium Alloy, Sustainability. https://doi.org/10.3390/su122410494

    Article  Google Scholar 

  7. Kondori B., Mahmudi R. (2010) Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy, Materials Science and Engineering: A 527, 2014–2021. https://doi.org/10.1016/j.msea.2009.11.043

  8. Wu G., Fan Y., Gao H., Zhai C., Zhu Y.P. (2005) The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D, Materials Science and Engineering: A 408, 255–263. https://doi.org/10.1016/j.msea.2005.08.011

  9. Ai X., Quan G. (2012) Effect of Ti on the Mechanical Properties and Corrosion of Cast AZ91 Magnesium Alloy, The Open Materials Science Journal 6, 6–13. https://doi.org/10.2174/1874088X01206010006

    Article  CAS  Google Scholar 

  10. Candan S., Unal M., Koc E., Turen Y., Candan E. (2011) Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy, Journal of Alloys and Compounds 509, 1958–1963. https://doi.org/10.1016/j.jallcom.2010.10.100

  11. Chen J., Chen Z., Yan H., Zhang F., Liao K. (2008) Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys, Journal of Alloys and Compounds 461, 209–215. https://doi.org/10.1016/j.jallcom.2007.07.066

  12. Guangyin Y., Yangshan S., Wenjiang D. (2001) Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy, Materials Science and Engineering: A 308, 38–44. https://doi.org/10.1016/S0921-5093(00)02043-8

  13. Huang Q., Liu Y., Tong M., Pan H., Yang C., Luo T., Yang Y. (2020) Enhancing tensile strength of Mg–Al–Ca wrought alloys by increasing Ca concentration, Vacuum 177, 109356. https://doi.org/10.1016/j.vacuum.2020.109356

  14. Nene S.S., Zellner S., Mondal B., Komarasamy M., Mishra R.S., Brennan R.E., Cho K.C. (2018) Friction stir processing of newly-designed Mg-5Al-3.5Ca-1Mn (AXM541) alloy: Microstructure evolution and mechanical properties, Materials Science and Engineering: A 729, 294–299. https://doi.org/10.1016/j.msea.2018.05.073

  15. Pan H., Ren Y., Fu H., Zhao H., Wang L., Meng X., Qin G. (2016) Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, Journal of Alloys and Compounds 663, 321–331. https://doi.org/10.1016/j.jallcom.2015.12.057

  16. Turen Y. (2013) Effect of Sn addition on microstructure, mechanical and casting properties of AZ91 alloy, Materials & Design 49, 1009–1015. https://doi.org/10.1016/j.matdes.2013.02.037

  17. Wang B., Chen X., Pan F., Mao J. (2017) Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys, Progress in Natural Science: Materials International 27, 695–702. https://doi.org/10.1016/j.pnsc.2017.11.002

  18. Xu S.W., Oh-ishi K., Kamado S., Uchida F., Homma T., Hono K. (2011) High-strength extruded Mg–Al–Ca–Mn alloy, Scripta Materialia 65, 269–272. https://doi.org/10.1016/j.scriptamat.2011.04.026

  19. Ma Z.Y. (2008) Friction Stir Processing Technology: A Review, Metallurgical and Materials Transactions A 39, 642–658. https://doi.org/10.1007/s11661-007-9459-0

    Article  CAS  Google Scholar 

  20. Mishra R.S., Ma Z.Y., Charit I. (2003) Friction stir processing: a novel technique for fabrication of surface composite, Materials Science and Engineering: A 341, 307–310. https://doi.org/10.1016/S0921-5093(02)00199-5

  21. Huang Y., Wang Y., Meng X., Wan L., Cao J., Zhou L., Feng J. (2017) Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys, Journal of Materials Processing Technology 249, 331–338. https://doi.org/10.1016/j.jmatprotec.2017.06.021

  22. Wang W., Han P., Peng P., Zhang T., Liu Q., Yuan S., Huang L., Yu H., Qiao K., Wang K. (2020) Friction Stir Processing of Magnesium Alloys: A Review, Acta Metallurgica Sinica (English Letters) 33, 43–57. https://doi.org/10.1007/s40195-019-00971-7

    Article  CAS  Google Scholar 

  23. Cavaliere P., De Marco P.P. (2007) Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting, Materials Characterization 58, 226–232. https://doi.org/10.1016/j.matchar.2006.04.025

  24. Yousefpour F., Jamaati R., Aval H.J. (2021) Effect of traverse and rotational speeds on microstructure, texture, and mechanical properties of friction stir processed AZ91 alloy, Materials Characterization 178, 111235. https://doi.org/10.1016/j.matchar.2021.111235

  25. Overman N.R., Whalen S.A., Bowden M.E., Olszta M.J., Kruska K., Clark T., Stevens E.L., Darsell J.T., Joshi V.V., Jiang X., Mattlin K.F., Mathaudhu S.N. (2017) Homogenization and texture development in rapidly solidified AZ91E consolidated by Shear Assisted Processing and Extrusion (ShAPE), Materials Science and Engineering: A 701, 56–68. https://doi.org/10.1016/j.msea.2017.06.062

  26. Whalen S., Overman N., Joshi V., Varga T., Graff D., Lavender C. (2019) Magnesium alloy ZK60 tubing made by Shear Assisted Processing and Extrusion (ShAPE), Materials Science and Engineering: A 755, 278–288. https://doi.org/10.1016/j.msea.2019.04.013

  27. Whalen S., Joshi V., Overman N., Caldwell D., Lavender C., Skszek T. (2017) Scaled-Up Fabrication of Thin-Walled ZK60 Tubing Using Shear Assisted Processing and Extrusion (ShAPE), in: K.N. Solanki, D. Orlov, A. Singh, N.R. Neelameggham (Eds.) Magnesium Technology 2017 Springer International Publishing Cham pp. 315–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia, D. et al. (2023). Solid-Phase Processing of Mg–Al–Mn–Ca for High Strength and Ductility. In: Barela, S., Leonard, A., Maier, P., Neelameggham, N.R., Miller, V.M. (eds) Magnesium Technology 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22645-8_27

Download citation

Publish with us

Policies and ethics