Skip to main content

Ferronickel Production from Nickel Laterite via Sulfide Chemistry

  • Conference paper
  • First Online:
Advances in Pyrometallurgy (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Nickel and ferronickel are critical components for production of products ranging from commodity metals to lithium-ion batteries. Current and future production rely on processing lateritic sources of nickel, which exhibit a range of technical and sustainability challenges. New sulfide-based process chemistries have been developed as platform technologies to decarbonize mining, materials separations, impurity management, and metals production. Herein, we utilize sulfide chemistry to produce carbon-free ferronickel. We first demonstrate selective sulfidation of mixed laterite feedstocks to form an iron-nickel sulfide matte. We then explore the thermodynamics of vacuum thermal treatment processes to enrich the matte in nickel via selective oxidation of iron. Finally, we employ aluminothermic reduction via reactive vacuum distillation to produce ferronickel from iron-nickel sulfide. These results lay the groundwork for an autothermal pathway to manufacture ferronickel from lateritic ore without direct greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (2011) Extractive metallurgy of nickel, cobalt, and platinum-group metals. Elsevier, Oxford, UK

    Google Scholar 

  2. Norgate TE, Jahanshahi S, Rankin WJ (2004) Alternative routes to stainless steel a life cycle approach. In: Tenth international ferroalloys congress, pp 693–704

    Google Scholar 

  3. Polyakov O (2013) Technology of ferronickel. In: Gaslikeditor M (ed) Handbook of ferroalloys. Elsevier, Oxford, UK

    Google Scholar 

  4. Stanković S, Kamberović Ž, Friedrich B, Stopić S R, Sokić M, Marković B, Schippers A (2022) Options for hydrometallurgical treatment of Ni-Co lateritic ores for sustainable supply of nickel and cobalt for European battery Industry from South-Eastern Europe and Turkey. Metals (Basel) 12(5). https://doi.org/10.3390/met12050807

  5. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575(7781):75–86. https://doi.org/10.1038/s41586-019-1682-5

    Article  CAS  Google Scholar 

  6. König U (2021) Nickel laterites—mineralogical monitoring for grade definition and process optimization. Minerals 11(11). https://doi.org/10.3390/min11111178

  7. Gleeson SA, Butt CRM, Elias M (2003) Nickel laterites: a review. Soc Econ Geol Newsl 45:11–18. https://doi.org/10.5382/SEGnews.2003-54.fea

    Article  Google Scholar 

  8. Keskinkilic E (2019) Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route. Metals (Basel) 9(974):1–16

    Google Scholar 

  9. Norgate T, Jahanshahi S (2010) Low grade ores—smelt, leach or concentrate? Miner Eng 23(2):65–73. https://doi.org/10.1016/j.mineng.2009.10.002

    Article  CAS  Google Scholar 

  10. Seo J, Kim K, Bae I, Lee J, Kim H (2016) A study on classification of limonite and saprolite from nickel laterite ores. J Korean Inst Resour Recycl 25(1):40–47. https://doi.org/10.7844/kirr.2016.25.1.40

    Article  CAS  Google Scholar 

  11. Harris CT, Peacey JG, Pickles CA (2011) Selective sulphidation of a nickeliferous lateritic ore. Miner Eng 24:651–660. https://doi.org/10.1016/j.mineng.2010.10.008

    Article  CAS  Google Scholar 

  12. Harris CT, Peacey JG, Pickles CA (2013) Selective sulphidation and flotation of nickel from a nickeliferous laterite ore. Miner Eng 54:21–31

    Article  CAS  Google Scholar 

  13. Diaz CM, Landolt CA, Vahed A, Warner AEM, Taylor JC (1988) A Review of nickel pyrometallurgical operations. JOM 40(9):28–33. https://doi.org/10.1007/BF03258548

    Article  CAS  Google Scholar 

  14. Stinn C, Allanore A (2022) Selective sulfidation of metal compounds. Nature 602:78–83. https://doi.org/10.1038/s41586-021-04321-5

    Article  CAS  Google Scholar 

  15. Daehn KE, Stinn C, Rush L, Benderly-Kremen E, Wagner ME, Boury C, Chmielowiec B, Gutierrez C, Allanore A (2022) Liquid copper and iron production from chalcopyrite, in the absence of oxygen. Metals (Basel) 12(9):1440. https://doi.org/10.3390/met12091440

    Article  CAS  Google Scholar 

  16. Stinn C, Allanore A (2022) Aluminothermic reduction of sulfides via reactive vacuum distillation. Light Metals 2022:681–688

    Google Scholar 

  17. Stinn C, Allanore A (2021) Selective sulfidation and electrowinning of nickel and cobalt for lithium ion battery recycling. In: Andersoneditor C (ed) Ni–Co 2021: The 5th international symposium on nickel and cobalt. Springer Nature, Cham, pp 99–110

    Google Scholar 

  18. Waldner P, Sitte W (2008) Thermodynamic modeling of Fe–Ni pentlandite. J Phys Chem Solids 69(4):923–927. https://doi.org/10.1016/j.jpcs.2007.10.011

    Article  CAS  Google Scholar 

  19. Daehn K, Allanore A (2020) Electrolytic production of copper from chalcopyrite. Curr Opin Electrochem 22:110–119. https://doi.org/10.1016/j.coelec.2020.04.011

    Article  CAS  Google Scholar 

  20. Wagner M-E, Allanore A (2022) Electrochemical separation of Ag2S and Cu2S from molten sulfide electrolyte. J Electrochem Soc 169(6):063511. https://doi.org/10.1149/1945-7111/ac7101

    Article  Google Scholar 

  21. Stinn C, Nose K, Okabe T, Allanore A (2017) Experimentally determined phase diagram for the barium sulfide-copper(I) sulfide system above 873 K (600 °C). Metall Mater Trans B. https://doi.org/10.1007/s11663-017-1107-5

  22. Bradley AJ (1949) Microscopical studies on the iron-nickel-aluminum system. Part 1 − α + β alloys and isothermal sections of the phase equilibrium diagram. J Iron Steel Inst 163:19–30

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Zaki Mubarok and Dr. Taufiq Hidayat for their insight and for the laterite ore sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Allanore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stinn, C., Allanore, A. (2023). Ferronickel Production from Nickel Laterite via Sulfide Chemistry. In: Fleuriault, C., et al. Advances in Pyrometallurgy. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22634-2_25

Download citation

Publish with us

Policies and ethics