Skip to main content

The Use of Concentrating Solar Energy for Thermal Decomposition in Oxide and Carbonate Minerals

  • Conference paper
  • First Online:
Advances in Pyrometallurgy (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Concentrating solar energy can deliver high temperature process heat to metallurgical processes. An overview of mineral resources in South Africa and Australia and the possibilities of using concentrating solar thermal energy for thermal decomposition as novel low-carbon pre-treatment processes are investigated. The paper will consider the thermodynamics of oxide and carbonate minerals and evaluate the potential carbon emission reductions as well as changes in energy demand of such processes. The state of the art of concentrating solar technologies for materials treatment as applied to the thermal decomposition reactions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Outotec (2019) HSC Chemistry. https://www.outotec.com/products/digital-solutions/hsc-chemistry/. Accessed 18 May 2019

  2. Roine A et al (2002) Outokumpu HSC chemistry for windows. Report for Outotec Research Oy, Finland, 02103-ORC-T

    Google Scholar 

  3. Abanades S (2019) Metal oxides applied to thermochemical water-splitting for hydrogen production using concentrated solar energy. ChemEngineering 3(3). https://doi.org/10.3390/chemengineering3030063.

  4. SolarGIS (2019) iMaps. Solar resource maps and GIS data for 200+ countries. https://solargis.com/maps-and-gis-data/overview/. Accessed 27 Feb 2019

  5. Council for Geoscience (2022) Council for Geoscience Interactive Web Map. https://maps.geoscience.org.za/portal/apps/sites/#/council-for-geoscience-interactive-web-map-1. Accessed 7 Sept 2022

  6. Voster CJ et al (2005). Simplified geology, selected mines and mineral deposits South Africa, Lesotho and Swaziland. Council for Geoscience, Pretoria, South Africa. http://www.geoscience.org.za/images/DownloadableMaterial/RSA_Mineral_Map.pdf. Accessed 7 Sept 2022

  7. Department of Mineral Resources and Energy (2022) Operating mines. https://www.dmr.gov.za/mineral-policy-promotion/operating-mines. Accessed 7 Sept 2022

  8. Beath AC (2012) Industrial energy usage in Australia and the potential for implementation of solar thermal heat and power. Energy 43(1):261–272. https://doi.org/10.1016/j.energy.2012.04.031.

  9. Eglinton T et al (2013) Potential applications of concentrated solar thermal technologies in the Australian minerals processing and extractive metallurgical industry. JOM 65(12):1710–1720. https://doi.org/10.1007/s11837-013-0707-z

    Article  Google Scholar 

  10. Amsbeck L et al (2016) Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants. In: Paper presented at SolarPACES2016 Cape Town, South Africa. https://doi.org/10.1063/1.4949148

  11. Ho CK (2017) Advances in central receivers for concentrating solar applications. Sol Energy 152:38–56. https://doi.org/10.1016/j.solener.2017.03.048

    Article  CAS  Google Scholar 

  12. Kodama T et al (2017) Particle reactors for solar thermochemical processes. Sol Energy 156:113–132. https://doi.org/10.1016/j.solener.2017.05.084

    Article  CAS  Google Scholar 

  13. Kumar L et al (2019) Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Convers Manage 195:885–908. https://doi.org/10.1016/j.enconman.2019.05.081

    Article  Google Scholar 

  14. Moumin G et al (2019) Solar treatment of cohesive particles in a directly irradiated rotary kiln. Sol Energy 182:480–490. https://doi.org/10.1016/j.solener.2019.01.093

    Article  CAS  Google Scholar 

  15. Davis D et al (2017) Solar-driven alumina calcination for CO2 mitigation and improved product quality. Green Chem 19(13):2992–3005. https://doi.org/10.1039/C7GC00585G

    Article  CAS  Google Scholar 

  16. Koepf E et al (2016) A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute. Appl Energy 188:620–651. https://doi.org/10.1016/j.apenergy.2016.11.088

    Article  CAS  Google Scholar 

  17. Meier A et al (2006) Solar chemical reactor technology for industrial production of lime. Sol Energy 80(10):1355–1362. https://doi.org/10.1016/j.solener.2005.05.017

    Article  CAS  Google Scholar 

  18. Pickles CA (2003) Drying kinetics of nickeliferous limonitic laterite ores. Miner Eng 16(12):1327–1338. https://doi.org/10.1016/S0892-6875(03)00206-1

    Article  CAS  Google Scholar 

  19. Wang F et al (2023) An integrated process of CO2 mineralization and selective nickel and cobalt recovery from olivine and laterites. Chem Eng J 451. https://doi.org/10.1016/j.cej.2022.139002

  20. Elliott R et al (2016) Thermodynamics of the reduction roasting of nickeliferous laterite ores. JMMCE 04(06):320–346. https://doi.org/10.4236/jmmce.2016.46028

    Article  CAS  Google Scholar 

  21. Ebrahimi-Nasrabadi K et al (2013) Time-temperature-transformation (TTT) diagram of caustic calcined magnesia. CIM J 6(1):42–50

    Article  Google Scholar 

  22. Ebert et al (2019) Operational experience of a centrifugal particle receiver prototype. In: Paper presented at SolarPACES2018, Casablanca, Morocco, 2019. https://doi.org/10.1063/1.5117530.

  23. Sorensen B et al (2010) Properties of manganese ores and their change in the process of calcination. In: Paper presented at the twelve international ferroalloys conference, Helsinki, Finland, 6–9 June 2010

    Google Scholar 

  24. Tangstad M et al (1995) The ferromanganese process- material and energy balance. In: Paper presented at InfaconVII, Trondheim, Norway, 11–14 June 1995

    Google Scholar 

  25. Ringdalen E et al (2010) Ore melting and reduction in silicomanganese production. Metall and Mater Trans B 41(6):1220–1229. https://doi.org/10.1007/s11663-010-9350-z

    Article  CAS  Google Scholar 

  26. Chetty D (2008) A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa. Ph.D. thesis, University of Johannesburg

    Google Scholar 

  27. Terayama K et al (1983) Study on thermal decomposition of MnO2 and Mn2O3 by thermal analysis. Trans JIM 24(11):754–758. https://doi.org/10.2320/matertrans1960.24.754

    Article  CAS  Google Scholar 

  28. Alonso E et al (2013) Kinetics of Mn2O3–Mn3O4 and Mn3O4–MnO redox reactions performed under concentrated thermal radiative flux. Energy Fuels 27(8):4884–4890. https://doi.org/10.1021/ef400892j

    Article  CAS  Google Scholar 

  29. Botas JA et al (2012) Kinetic modelling of the first step of Mn2O3/MnO thermochemical cycle for solar hydrogen production. Int J Hydrogen Energy 37(24):18661–18671. https://doi.org/10.1016/j.ijhydene.2012.09.114

    Article  CAS  Google Scholar 

  30. McRae LB (1979) The prereduction of Mamatwan-type ores. Report for National Institute for Metallurgy, Randburg, South Africa

    Google Scholar 

  31. Eric RH et al (1992) The mechanism and kinetics of the carbothermic reduction of mamatwan manganese ore fines. Miner Eng 5(7):795–815. https://doi.org/10.1016/0892-6875(92)90247-7

    Article  CAS  Google Scholar 

  32. Steenkamp JD et al (2015) Characterisation of two UMK manganese ore samples and one briquette sample. Report for MINTEK, Randburg

    Google Scholar 

  33. Hockaday L et al. Solar thermal treatment of manganese ores. In: Paper in AIP conference proceedings 2033, Santiago, Chile. https://doi.org/10.1063/1.5067152

  34. Hockaday L et al (2019) The solar thermal treatment of manganese ore pellets using closed-loop forced convection of air. In: Paper presented at SolarPACES2018, Casablanca, Morocco. https://doi.org/10.1063/1.5117659

  35. Hockaday L et al (2021) A comparison of direct concentrating solar thermal treatment of manganese ores to fossil fuel based thermal treatments. In: Paper presented at the sixteenth international ferro-alloys congress, Trondheim, Norway, 27–29 Sept 2021. https://doi.org/10.2139/ssrn.3926254

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Hockaday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hockaday, L., Reynolds, Q. (2023). The Use of Concentrating Solar Energy for Thermal Decomposition in Oxide and Carbonate Minerals. In: Fleuriault, C., et al. Advances in Pyrometallurgy. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22634-2_18

Download citation

Publish with us

Policies and ethics