Skip to main content

Water Gradations Stoichiometrically Resolve Cuprous-Chloride Tetrahedral Stamps in a Hydrochloric-Acid Smelter

  • Conference paper
  • First Online:
Advances in Powder and Ceramic Materials Science 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Our proposed gradation of a bearability-changer in solution-bodied cuprous chloride interfaces the stoichiometry with the disposal-habit in precipitation. The simplicity of an antisolvent-decoupled cuprous halide in a solvent is selected for an efficacious scout around a gradational tour de force. Likewise, this select is an engineered representative to give semiconduction- and production-applicability a wieldy affordable leg up. As water specials gradationally unload the cuprous chloride near saturation in hydrochloric acid, the precipitated ones’ exteriority stoichiometrically transitions. In delving an exterior-eventuality from interiority of these precipitates, their bred-in-the-bone zincblende lattice is fingered by the hired X-ray diffractometer. Optical microscopy and morphology further the visualization of the tetrahedron-externals drawn from some veterans in similar smelteries. For a constructional attraction, the escalated water bricks and downsizes an analogous façade to the primitive repeating unit at microscale. In these bricked analogies, the new discovered stellated-octahedra feature in the stoichiometric-bricking literacy and their superficial flair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor AD et al (2021) A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat Commun 12(1):1878

    Article  CAS  Google Scholar 

  2. Luan C et al (2022) A real-time in situ demonstration of direct and indirect transformation pathways in CdTe magic-size clusters at room temperature. Angew Chem 134(35):e202205784

    Article  Google Scholar 

  3. Vartanian, A., Some transformations happen within. Nature Reviews Materials, 2022.

    Google Scholar 

  4. Ben-Moshe A et al (2021) The chain of chirality transfer in tellurium nanocrystals 372(6543): 729–733

    Google Scholar 

  5. Popov I (2021) Is chiral crystal shape inherited or acquired? 372(6543):688–688

    Google Scholar 

  6. Sevim S et al (2022) Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows. Nat Commun 13(1):1766

    Article  CAS  Google Scholar 

  7. Oki O et al (2022) Synchronous assembly of chiral skeletal single-crystalline microvessels. 377(6606):673–678

    Google Scholar 

  8. Yang W, Yang J, Shin HS (2022) Phase- and composition-controlled synthesis. Nat Mater

    Google Scholar 

  9. Zhou J et al (2022) Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat Mater

    Google Scholar 

  10. Kim Y et al (2021) Tailored growth of single-crystalline InP tetrapods. Nat Commun 12(1):4454

    Article  CAS  Google Scholar 

  11. Grote L et al (2021) X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies. Nat Commun 12(1):4429

    Article  CAS  Google Scholar 

  12. Yan, C., et al., Facet-selective etching trajectories of individual semiconductor nanocrystals. 2022. Sci Adv 8(32): eabq1700.

    Google Scholar 

  13. Wang Y et al (2013) Shape-controlled synthesis of palladium nanocrystals: a mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett 13(5):2276–2281

    Article  CAS  Google Scholar 

  14. Liu H et al (2013) Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach. J Mater Chem A 1(2):302–307

    Article  CAS  Google Scholar 

  15. Akkerman, Q.A., et al., Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science, 2022.

    Google Scholar 

  16. Liu K-W, Hsu J-L (2019) An innovative self-weld framework of microscale copper phthalocyanine. SCIREA Journal of Materials 4(1):1–13

    Google Scholar 

  17. Liu K-W, Hsu J-L (2020) α-periodicity is spontaneously phased in an acicular sulfuric-recrystallized precipitate of copper phthalocyanine. Eur J Appl Sci 8(6):81–92

    Google Scholar 

  18. Shi D et al (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals 347(6221):519–522

    Google Scholar 

  19. Liu Y et al (2015) Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization 27(35):5176–5183

    Google Scholar 

  20. Rakita Y et al (2016) Low-temperature solution-grown CsPbBr 3 single crystals and their characterization. Cryst Growth Des 16(10):5717–5725

    Article  CAS  Google Scholar 

  21. Liu A et al (2021) Engineering Copper Iodide (CuI) for multifunctional p-type transparent semiconductors and conductors 8(14):2100546

    Google Scholar 

  22. Gong C et al (2019) Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes 31(36):1903580

    Google Scholar 

  23. Ono S (2021) Metastability relationship between two- and three-dimensional crystal structures: a case study of the Cu-based compounds. Sci Rep 11(1):14588

    Article  CAS  Google Scholar 

  24. Fritz JJ (1982) Solubility of cuprous chloride in various soluble aqueous chlorides. J Chem Eng Data 27(2):188–193

    Article  CAS  Google Scholar 

  25. Shang Y, Zhang D, Guo L (2011) CuCl-intermediated construction of short-range-ordered Cu2O mesoporous spheres with excellent adsorption performance. J Mater Chem 22:856–861

    Article  Google Scholar 

  26. Natarajan, G., et al., Atomic layer deposition of CuCl nanoparticles. Applied Physics Letters, 2010. 97.

    Google Scholar 

  27. Kondo S, Kakuchi M, Saito T (2004) Photoluminescence from microcrystalline CuCl films grown from the amorphous phase. J Phys: Condens Matter 16(45):8085–8092

    CAS  Google Scholar 

  28. Krumpolec R et al (2018) Structural and optical properties of luminescent copper(I) chloride thin films deposited by sequentially pulsed chemical vapour deposition 8(10):369

    Google Scholar 

  29. Liu K et al (2022) Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat Commun 13(1):4891

    Article  CAS  Google Scholar 

  30. Yan Y et al (2021) Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites. Nat Commun 12(1):6603

    Article  CAS  Google Scholar 

  31. Guo W et al (2021) Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 12(1):3194

    Article  CAS  Google Scholar 

  32. Andalib S, Taira K, Kavehpour HP (2021) Data-driven time-dependent state estimation for interfacial fluid mechanics in evaporating droplets. Sci Rep 11(1):13579

    Article  CAS  Google Scholar 

  33. Ober P et al (2021) Liquid flow reversibly creates a macroscopic surface charge gradient. Nat Commun 12(1):4102

    Article  CAS  Google Scholar 

  34. Escala DM, Muñuzuri AP (2021) A bottom-up approach to construct or deconstruct a fluid instability. Sci Rep 11(1):24368

    Article  CAS  Google Scholar 

  35. Liu K-W, Hsu J-L (2022) Video 1. https://youtu.be/2JRxGW8f4jw

  36. Liu K-W, Hsu J-L (2022) Video 2. https://youtube.com/shorts/ltkn7q3XGvA

  37. Liu K-W, Hsu J-L (2022) Video 3. https://youtu.be/l0p5OnnRyC4

  38. Han MS et al (2003) Surface properties of CuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC and CO-TPD analyses. Appl Surf Sci 211(1):76–81

    Article  CAS  Google Scholar 

  39. Ferrandon MS et al (2010) Hydrolysis of CuCl2 in the Cu–Cl thermochemical cycle for hydrogen production: Experimental studies using a spray reactor with an ultrasonic atomizer. Int J Hydrogen Energy 35(5):1895–1904

    Article  CAS  Google Scholar 

  40. Poreddy R, Engelbrekt C, Riisager A (2015) Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal Sci Technol 5(4):2467–2477

    Article  CAS  Google Scholar 

  41. Yin Z, Lin L, Ma D (2014) Construction of Pd-based nanocatalysts for fuel cells: opportunities and challenges. Catal Sci Technol

    Google Scholar 

  42. King ME, Personick ML (2017) bimetallic nanoparticles with exotic facet structures via iodide-assisted reduction of palladium. 34(5):1600422

    Google Scholar 

  43. Villarreal E, Li GG, Wang H (2018) Carving growing nanocrystals: coupling seed-mediated growth with oxidative etching. Nanoscale 10(39):18457–18462

    Article  CAS  Google Scholar 

  44. Vartanian A (2021) The many facets of cooperativity. Nat Rev Mater

    Google Scholar 

  45. Ye R et al (2021) Nanoscale cooperative adsorption for materials control. Nat Commun 12(1):4287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, KW., Hsu, JL. (2023). Water Gradations Stoichiometrically Resolve Cuprous-Chloride Tetrahedral Stamps in a Hydrochloric-Acid Smelter. In: Li, B., et al. Advances in Powder and Ceramic Materials Science 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22622-9_6

Download citation

Publish with us

Policies and ethics