Skip to main content

Sintering Mechanism for Polycrystalline Diamond

  • Conference paper
  • First Online:
Advances in Powder and Ceramic Materials Science 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 628 Accesses

Abstract

High-performance sintered diamond tools are applied to fields such as wire drawing and rock drilling. They represent a considerable advancement in hard materials sintering. Diamond particles with cobalt are liquid phase sintered to produce a dense composite using high pressure (5 GPa or more) and high temperature (1400 °C or more). Pressure is applied during heating to avoid decomposition into graphite. That pressure is amplified at grain contacts to stabilize diamond, but graphite forms at lower stress regions away from the grain contacts. Sintering occurs when melt spreads between the grains to dissolve carbon, initiating transport from graphite regions to diamond contacts. Necks nucleate on surface defects in preferred crystallographic directions. The sintered diamond exhibits properties, such as high hardness, that reflect the processing parameters or powder size, defect structure, cobalt content, peak temperature, pressure, and hold time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katzman H, Libby WF (1971) Sintered diamond compacts with a cobalt binder. Science 172:1132–1134

    Article  CAS  Google Scholar 

  2. Belnap JD (2010) Sintering of ultrahard materials. In: Fang ZZ (ed) Sintering of advanced materials. Woodhead, Oxford, pp 389–414

    Chapter  Google Scholar 

  3. Belnap JD, Griffo A (2004) Homogeneous and structured PCD/WC-Co materials for drilling. Diamond Related Mater 13:1914–1922

    Article  CAS  Google Scholar 

  4. Hong SM, Akaishi M, Kanda H, Osawa T, Yamoaka S (1991) Dissolution behavior of fine particles of diamond under high pressure sintering conditions. J Mater Sci Lett 10:164–166

    Article  CAS  Google Scholar 

  5. DeVries RC (1975) Plastic deformation and “Work-Hardening” of diamond. Mater Res Bull 10:1193–1200

    Article  CAS  Google Scholar 

  6. Gasc J, Wang Y, Yu T, Benea IC, Rosczyk BR, Shinmei T, Irifune T (2015) High-pressure, high-temperature plastic deformation of sintered diamonds. Diamond Related Mater 59:95–103

    Article  CAS  Google Scholar 

  7. Uehara K, Yamaya S (1990) High pressure sintering of diamond by cobalt infiltration. In: Saito S, Fukunaga O, Yoshikawa M (eds) Proceedings 1st international conference on new diamond science and technology, pp 203–209

    Google Scholar 

  8. Guan S, Peng F, Liang H, Fan C, Tan I, Wang Z, Zhang Y, Zhang J, Yu H, He D (2018) Fragmentation and stress diversification in diamond powder under high pressure. J Appl Phys 134:215902

    Article  Google Scholar 

  9. Ngwekhulu TT (2018) Effect of Diamond Grain Size on Magnetic Properties of the Cobalt Phase in PCD Compacts, MS Thesis, University of the Witwatersrand, Johannesburg

    Google Scholar 

  10. Brookes CA, Brookes EJ (1991) Diamond in perspective: a review of mechanical properties of natural diamond. Diamond Related Mater 1:13–17

    Article  CAS  Google Scholar 

  11. Bobrovnitchii GS, Osipov OS, Filgueira M (2003) Some peculiarities of the diamond micro-powder sintering. Inter J Refract Met Hard Mater 21:251–258

    Article  CAS  Google Scholar 

  12. Qian J, Pantea C, Voronin G, Zerda TW (2001) Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J Appl Phys 90:1632–1637

    Article  CAS  Google Scholar 

  13. Davies G, Evans T (1972) Graphitization of diamond at zero pressure and at a high pressure. Proc Royal Soc Lond A 328:413–427

    Article  CAS  Google Scholar 

  14. Glosli JN, Ree FH (1999) The melting line of diamond determined via atomistic computer simulations. J Chem Phys 110:441–446

    Article  CAS  Google Scholar 

  15. Li SJ, Akaishi M, Ohsawa T, Yamaoka S (1990) Sintering behaviour of the diamond-super invar alloy system at high temperature and pressure. J Mater Sci 25:4150–4156

    Article  CAS  Google Scholar 

  16. Skury ALD, Bobrovinichii GS, Monteiro SN, Azevdeo MG, Silva A (2012) Liquid phase migration during diamond powder sintering by infiltration method. Mater Sci Forum 727:450–455

    Article  Google Scholar 

  17. Park JK, Akaishi M, Yamaoka M, Fukunaga O, Eun KY, Yoon DN (1992) Formation of bridges between diamond particles during sintering in molten cobalt matrix. J Mater Sci 27:4695–4697

    Article  CAS  Google Scholar 

  18. Lima FTC, Bobrovnitchii GS, Filgueira M (2005) Study of the diamond 5 wt % cobalt sintering under the HPHT lowest limit. Mater Sci Forum 498:225–230

    Article  Google Scholar 

  19. Akaishi M, Sato Y, Setaka N, Tsutsumi M, Ohsawa T, Fujunaga O (1983) Effect of additive graphite on sintering of diamond. Am Cer Soc Bull 62:689–695

    CAS  Google Scholar 

  20. Akaishi M, Kanda H, Sato Y, Setaka N, Ohsawa T, Fukunaga O (1982) Sintering behaviour of the diamond-cobalt system at high temperature and pressure. J Mater Sci 17:193–198

    Article  CAS  Google Scholar 

  21. Boland JN, Li XS (2010) Microstructural characterisation and wear behaviour of diamond composite materials. Mater 3:1390–1419

    Article  CAS  Google Scholar 

  22. Tian Y, Wang J, Zhang J, Guan S, Zhang L, Wu B, Su Y, Huang M, Zhou L, He D (2020) Solubility and stability of diamond in cobalt under 5 GPa. Diamond Related Mater 110:108158

    Article  CAS  Google Scholar 

  23. German RM (1996) Sintering theory and practice. Wiley-Interscience, New York

    Google Scholar 

  24. German RM (2014) Sintering: from empirical observations to scientific principles. Elsevier, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal M. German .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

German, R.M. (2023). Sintering Mechanism for Polycrystalline Diamond. In: Li, B., et al. Advances in Powder and Ceramic Materials Science 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22622-9_15

Download citation

Publish with us

Policies and ethics