Skip to main content

Assessment of the Nutritive Value of Individual Feeds and Diets by Novel Technologies

  • Chapter
  • First Online:
Smart Livestock Nutrition

Part of the book series: Smart Animal Production ((SMANPR,volume 1))

Abstract

Feed accounts for the largest cost item in livestock production. Optimising the feed to the animal needs is therefore pivotal to efficient animal production and to minimise environmental and climate impacts. Classically, feed has been optimised based on table values and with the possibility for adjustment due to differences in chemical composition of ingredients. The latter requires tedious and costly wet chemical methods and has further the limitation that it cannot be used for the measurement of the nutritive value in real time. Near-infrared reflectant spectroscopy (NIRS), which utilises the interaction between light and matter, holds the potential to be used as online tool for measurements not only of nutrient composition, but also on nutritional value, provided that sufficiently large reference databases are available. This chapter discusses the recent progress in the development of calibration equations for the measurements of the digestibility of nutrients and energy values based on NIR scans of feedstuffs and diets and faecal residues, and how NIRS can be used to control the quality of feeds from a feed mill in real time and optimise the provision of nutrients for animals during growth and production. The use of NIRS calibrations developed based on faecal residues as a tool to select pigs with improved nutrient digestibility and value is also described and discussed. Real-time quality control of feeds provided to the animal has a central role in the implementation of smart nutrition in livestock systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABVista. (2020). Technical whitepaper: Peeling back the layers of fibre for animal performance. WWW.internationalfibre.com/reference-guides.

    Google Scholar 

  • Agelet, L. E., & Hurburgh, C. R. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40, 246–260.

    Article  CAS  Google Scholar 

  • Aufrere, J., Graviou, D., Demarquilly, C., Perez, J. M., & Andrieu, J. (1996). Near infrared reflectance spectroscopy to predict energy value of compound feeds for swine and ruminants. Animal Feed Science and Technology, 62, 77–90.

    Article  CAS  Google Scholar 

  • Bach Knudsen, K. E., Eggum, B. O., & Jacobsen, I. (1987). Nutritive value of Danish-grown barley varieties, 2, effect of carbohydrate composition on digestibility of energy and protein. Journal of Cereal Science, 6, 187–195.

    Article  Google Scholar 

  • Bach Knudsen, K. E., Lærke, H. N., & Jørgense, H. J. H. (2013). Carbohydrates and carbohydrate utilization in swine. In L. I. Chiba (Ed.), Sustainable swine nutrition (pp. 109–137). Wiley.

    Google Scholar 

  • Baeten, V., Pierna, J. A. F., Lecler, B., Abbas, O., Vincke, D., Minet, O., Vermeulen, P., & Dardenne, P. (2016). Near infrared spectroscopy for food and feed: A mature technique. NIR News, 27, 4–6.

    Article  Google Scholar 

  • Barnes, R. F., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43, 772–777.

    Article  CAS  Google Scholar 

  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta, 1767(9), 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  • Barton, F. E. (1991). New methods for the structural and compositional analysis of cell wall quality determination. Animal Feed Science and Technology, 32, 1–11.

    Article  CAS  Google Scholar 

  • Bastianelli, D. (2013). NIRS as a tool to assess digestibility in feeds and feedstuffs. In International congress on advancements in poultry production in the Middle East and African countries (pp. 21–25)

    Google Scholar 

  • Bastianelli, D., Bonnal, L., Jaguelin-Peyraud, Y., & Noblet, J. (2015). Predicting feed digestibility from NIRS analysis of pig faeces. Animal, 9(5), 781–786. https://doi.org/10.1017/s1751731114003097

    Article  CAS  PubMed  Google Scholar 

  • Beams, R. M., Helm, J. H., Eggum, B. O., Boisen, S., Swift, M. L., & Bach Knudsen, K. E. (1996). A comparison of methods for measuring the nutritive value of a range of hulled and hulless barley cultivars. Animal Feed Science and Technology, 62, 189–201.

    Article  Google Scholar 

  • Black, J. L., & Spragg, J. C. (2010). NIR of feedstuffs and enhancement of NIR prediction of nutrient availability. In Proceedings of the Midwest Swine Nutrition Conference, Indianapolis (pp. 24–30).

    Google Scholar 

  • Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: A rapid-response analytcal tool. TrAC Trends in Analytical Chemistry, 21, 240–250.

    CAS  Google Scholar 

  • Boisen, S., & Fernández, J. A. (1997). Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology, 68, 277–286.

    Article  Google Scholar 

  • Campo, L., Monteagudo, A. B., Sallers, B., Castro, P., & Moreno-Gonzalez, J. (2013). NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability. Spanish Journal of Agricultural Research, 11, 463–471.

    Article  Google Scholar 

  • Chen, G. L., Zhang, B., Wu, J. G., & Shi, C. H. (2011). Nondestructive assessment of amino acid composition in rapeseed meal based on intact seeds by near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 165, 111–119. https://doi.org/10.1016/j.anifeedsci.2011.02.004

    Article  CAS  Google Scholar 

  • Chen, L., Yang, Z., & Han, L. (2013). A review on the use of near-infrared spectroscopy for analyzing feed protein materials. Applied Spectroscopy Reviews, 48, 509–522.

    Article  CAS  Google Scholar 

  • Chen, L., Gao, L. X., Huang, Q. H., Lu, Q. P., Sa, R. N., & Zhang, H. F. (2014). Prediction of digestible energy of feed ingredients for growing pigs using a computer-controlled simulated digestion system. Journal of Animal Science, 92, 3887–3894.

    Article  CAS  PubMed  Google Scholar 

  • Cozannet, P., Lessire, M., Gady, C., Metayer, J. P., Primot, Y., Skiba, F., & Noblet, J. (2010). Energy value of wheat dried distillers grains with solubles in roosters, broilers, layers, and turkeys. Poultry Science, 89(10), 2230–2241. https://doi.org/10.3382/ps.2010-00833

    Article  CAS  PubMed  Google Scholar 

  • CVAS. (2021). https://www.foragelab.com/Lab-Services/Forage-and-Feed/NIR/

  • Dale, L. M., Pierna, J. A. F., Vermeulen, P., Lecler, B., Bogdan, A. D., Pacurar, F. S., Rotar, I., Thewis, A., & Baeten, V. (2012). Research on crude protein and digestibility of Arnica montana L. using conventional NIR spectrometry and hyperspectral imaging NIR. Journal of Food, Agriculture and Environment, 10(1), 391–396.

    CAS  Google Scholar 

  • Davies, A. M. C. (2014). An introduction to near infrared (NIR) spectroscopy. Journal of Near Infrared Spectroscopy. IM Publicatins Open:5. https://www.impopen.com/introduction-near-infrared-nir-spectroscopy

  • Escuredo, O., Martin, M. I. G., Moncada, G. W., Fischer, S., & Hierro, J. M. H. (2014). Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. Journal of Cereal Science, 60, 67–74. https://doi.org/10.1016/j.jcs.2014.01.016

    Article  CAS  Google Scholar 

  • EVONIK. (2021). https://animal-nutrition.evonik.com/en/services/analytical-services

  • FAO. (2013). Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. Rome, Italy.

    Google Scholar 

  • Fearn, T. (2014). The overuse of R2. NIR News, 25, 32–32.

    Google Scholar 

  • Fontaine, J., Horr, J., & Schirmer, B. (2001). Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. Journal of Agricultural and Food Chemistry, 49(1), 57–66. https://doi.org/10.1021/jf000946s

    Article  CAS  PubMed  Google Scholar 

  • Fontaine, J., Schirmer, B., & Horr, J. (2002). Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. Journal of Agricultural and Food Chemistry, 50(14), 3902–3911. https://doi.org/10.1021/jf011637k

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez, F., Galver-Solo, L., Martinez-Nicolas, J. J., Muelas-Domingo, R., & Nieves, M. (2017). Using near-infrared spectroscopy in agricultural systems, in developments in near-infrared spectroscopy. In K. G. Kyprianidis & J. Skvaril (Eds.), Developments in near-infrared spectroscopy (pp. 97–127). InTech.

    Google Scholar 

  • Garnsworthy, P. C., Wiseman, J., & Fegeros, K. (2000). Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. The Journal of Agricultural Science, 135, 409–417.

    Article  Google Scholar 

  • Glitsø, L. V., Brunsgaard, G., Højsgaard, S., Sandström, B., & Bach Knudsen, K. E. (1998). Intestinal degradation in pigs of rye dietary fibre with different structural characteristics. The British Journal of Nutrition, 80(5), 457–468.

    Article  PubMed  Google Scholar 

  • Gonzalez-Martin, I. N., Alvarez-Garcia, N., & Gonzalez-Cabrera, J. M. (2006). Near-infrared spectroscopy (NIRS) with a fibre-optic probe for the prediction of the amino acid composition in animal feeds. Talanta, 69, 706–710. https://doi.org/10.1016/j.talanta.2005.11.015

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, P. R. (2002). Beer´s law. In Handbook of vibrational theory. Wiley.

    Google Scholar 

  • Henry, Y., Vogt, H., & Zoiopolus, P. E. (1988). Feed evaluation and nutritional requirements. III. 4. Pigs and poultry. Livestock Production Science, 19, 299–354.

    Article  Google Scholar 

  • Hoehler, D., Goodson, J., Fontaine, J., Jaeger, A., & Schirmer, B. (2005). NIR spectroscopy for prediction of amino acids in feed ingredients. 66th Minnesota nutrition conference and technical symposium: Future of corn in animal feed, St. Paul, Minnesota, September 20–21, 2005.

    Google Scholar 

  • Hu, J., Li, J., Pan, L., Piao, X., Sui, L., Xie, G., Zhang, S., Zhang, L., & Wang, J. (2019). Rapid determination of the content of digestible energy and metabolizable energy in sorghum fed to growing pigs by near-infrared reflectance spectroscopy. Journal of Animal Science, 97, 4855–4864.

    Article  PubMed  PubMed Central  Google Scholar 

  • ISO-12099. (2017). Animal feeding stuffs, cereals and milled cereal products – Guidelines for the application of near infrared spectrometry. International Organization for Standardization https://www.isoorg/standard/67352html

  • ISO-13903 (2005). Animal feeding stuffs; determination of amino acids content. https://www.isoorg/standard/37258html. 2018.

  • Just, A. (1975). Feed evaluation in pigs. World Review of Animal Production, 11, 18–20.

    Google Scholar 

  • Just, A. (1982). The net energy value of balanced diets for growing pigs. Livestock Production Science, 8, 541–555.

    Article  Google Scholar 

  • Just, A., Fernández, J. A., Jørgensen, H., & Jepsen, H. M. (1983a). Belysning af årsager til variationer i bygs foderværdi til svin [Elucidation of causes to variations in the feed value of barley for pigs]. In 543. Report from the National Institute of Animal Science. National Institute of Animal Science, Frederiksberg (p. 61).

    Google Scholar 

  • Just, A., Jørgensen, H., Fernández, J. A., Bech-Andersen, S., & Enggaard Hansen, N. (1983b). Forskellige foderstoffers kemiske sammensætning, fordøjelighed, energi- og proteinværdi til svin [The chemical composition, digestibility, energy and protein value of different feedstuff s for pigs]. In 556. Report from the National Institute of Animal Science. National Institute of Animal Science, Frederiksberg (p. 99).

    Google Scholar 

  • Just, A., Jorgensen, H., & Fernandez, J. A. (1984a). Prediction of metabolizable energy for pigs on the basis of crude nutrients in the feeds. Livestock Production Science, 11(1), 105–128. https://doi.org/10.1016/0301-6226(84)90012-5

    Article  Google Scholar 

  • Just, A., Jørgensen, H., & Fernández, J. A. (1984b). Prediction of metabolizable energy for pigs on the basis of crude nutrients in the feeds. Livestock Production Science, 11, 105–128.

    Article  Google Scholar 

  • Kil, D. Y., Kim, B. G., & Stein, H. H. (2013). Feed energy evaluation for growing pigs. Asian-Australasian Journal of Animal Sciences, 26, 1205–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko, I. V., Rippke, G. R., & Hurburgh, C. R. (2006). Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 54(10), 3485–3491. https://doi.org/10.1021/jf052570u

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Li, Q., Li, D., Chen, Y., Wang, X., Yang, W., & Zhang, L. (2016). Use of near-infrared reflectance spectroscopy for the rapid determination of the digestible energy and metabolizable energy content of corn fed to growing pigs. Journal of Animal Science and Biotechnology, 7, 45. https://doi.org/10.1186/s40104-016-0105-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann, M. E. E., McCracker, K. J., & Agnew, R. E. (2006). The use of near infrared reflectance spectroscopy (NIRS) for prediction of the nutritive value of barley for growing pigs. Irish Journal of Agricultural and Food Research, 45, 187–195.

    Google Scholar 

  • Millet, S., Aluwe, M., Van den Broeke, A., Leen, F., De Boever, J., & De Campeneere, S. (2018). Review: Pork production with maximal nitrogen efficiency. Animal, 12, 1060–1067.

    Article  CAS  PubMed  Google Scholar 

  • Moughan, P. J., Deglaire, A., & Wolfe, R. R. (2018a). Amino acid metabolism – An overview. In P. J. Moughan & W. H. Hendriks (Eds.), Feed evaluation science (pp. 219–248). Wageningen Academic Publishers.

    Chapter  Google Scholar 

  • Moughan, P. J., Miner-Williams, W., & Jha, R. (2018b). The digestion of protein – Amino acid digestibility. In P. J. Moughan & W. H. Hendriks (Eds.), Feed evaluation science (pp. 173–217). Wageningen Academic Publishers.

    Chapter  Google Scholar 

  • Nirea, K. G., Perez de Nanclares, M., Skugor, A., Afseth, N. K., Meuwissen, T. H. E., Hansen, J. O., Mydland, L. T., & Overland, M. (2018). Assessment of fecal near-infrared spectroscopy to predict feces chemical composition and apparent total-tract digestibility of nutrients in pigs. Journal of Animal Science, 96(7), 2826–2837. https://doi.org/10.1093/jas/sky182

    Article  PubMed  PubMed Central  Google Scholar 

  • Noblet, J. (2006). Recent advances in energy evaluation of feeds for pigs. In P. C. Garnsworthy & J. Wiseman (Eds.), Recent advances in animal nutrition 2005 (pp. 1–26). Nottingham University Press.

    Google Scholar 

  • Noblet, J., & Henry, Y. (1993). Energy evaluation systems for pig diets: A review. Livestock Production Science, 36, 121–141.

    Article  Google Scholar 

  • Noblet, J., & Perez, J. M. (1993). Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. Journal of Animal Science, 71, 3389–3398.

    Article  CAS  PubMed  Google Scholar 

  • Noel, S. J., Jørgense, H. J. H., & Bach Knudsen, K. E. (2021). Prediction of protein and amino acid composition and digestibility in individual feedstuffs and mixed diets for pigs using near-infrared spectroscopy. Animal Nutrition, 7, 1242–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noel, S. J., Jørgense, H. J. H., & Bach Knudsen, K. E. (2022). The use of near-infrared spectroscopy (NIRS) to determine the energy value of individual feedstuffs and mixed diets for pigs. Animal Feed Science and Technology, 283, 115156.

    Article  CAS  Google Scholar 

  • Norris, K. H. (1996). History of NIR. Journal of Near Infrared Spectroscopy, 4, 31–37.

    Article  CAS  Google Scholar 

  • Paternostre, L., Baeten, V., Ampe, B., Millet, S., & de Boever, J. (2021). The usefulness of NIRS calibration based on feed and fecal spectra to predict nutrient content, digestibility and net energy of pig feed. Animal Feed Science and Technology, 271, 115091.

    Article  Google Scholar 

  • Patience, J. F. (2018). The theory and practice of feed formulation. In P. J. Moughan & W. H. Hendriks (Eds.), Feed evaluation science (pp. 457–490). Wageningen Academic Publisher.

    Google Scholar 

  • Pazdernik, D. L., Killam, A. S., & Orf, J. H. (1997). Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agronomy Journal, 89, 679–685. https://doi.org/10.2134/agronj1997.00021962008900040022x

    Article  CAS  Google Scholar 

  • Pujol, S., Perez-Vendrell, A. M., & Torrallardona, D. (2007). Evaluation of prediction of barley digestible nutrient content with near-infrared reflectance spectroscopy (NIRS). Livestock Production Science, 109, 189–192. https://doi.org/10.1016/j.livsci.2007.01.144

    Article  Google Scholar 

  • Rinnan, Å., van den Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28, 1201–1222.

    CAS  Google Scholar 

  • Sapienza, D., Berzaghi, P., Martin, N., Taysom, D., Owens, F., Mahanna, B., Sevenich, D., & Allen, R. (2008). NIRS White Paper. Near Infrared Spectroscopy for forage and feed testing. USDA Agricultural Research Service U.S. Department of Agriculture. www.uwex.edu/ces/forage/NIRS/nirs_white_paper.pdf

  • Schiborra, A., Bulang, M., Berk, A., Susenbeth, A., & Schlecht, E. (2015). Using faecal near-infrared spectroscopy (FNIRS) to estimate nutrient digestibility and chemical composition of diets and faeces of growing pigs. Animal Feed Science and Technology, 210, 234–242.

    Article  CAS  Google Scholar 

  • Shurvell, H. F. (2002). Spectra-structure correlations in mid- and far-infrared. In Handbook of vibrational theory. Wiley.

    Google Scholar 

  • Stein, H. H., Fuller, M., Moughan, P., Sève, B., Mosenthin, R., Jansman, A., Fernández, J., & de Lange, C. (2007). Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livestock Production Science, 109, 282–285.

    Article  Google Scholar 

  • van Barneveld, R. J. (1999). Chemical and physical characteristics of grains related to variability in energy and amino acid available in pigs: A reviwe. Australian Journal of Agricultural Research, 50, 667–687.

    Article  Google Scholar 

  • van Barneveld, R. J., Nuttall, J. D., Flinn, P. C., & Osborne, B. G. (1999). Near infrared reflectance measurement of the digestible energy content of cereals for growing pigs. Journal of Near Infrared Spectroscopy, 7(1), 1–7.

    Article  Google Scholar 

  • van Barneveld, R. J., Graham, H., & Diffey, S. (2018). Predicting the nutritional quality of feed ingredients for pigs using near-infrared spectroscopy (NIRS) and chemical analysis. Animal Production Science, 58, 709–718.

    Article  Google Scholar 

  • van Kempen, T. A., & Simmins, P. H. (1997). Near-infrared reflectance spectroscopy in precision feed formulation. Journal of Applied Poultry Research, 6(4), 471–477.

    Article  Google Scholar 

  • van Kempen, T. R., Poulenc, R., & France, A. (1996). NIR technology: Can we measure amino acid digestibility and energy values? In 12th Annual Carolina Swine Nutrition Conference.

    Google Scholar 

  • van Milgen, J., Labussière, E., Noblet, J., & de Lange, C. F. M. (2018). Bioavailability of the dietary energy component. In P. J. Moughan & W. H. Hendriks (Eds.), Feed evaluation science (pp. 249–274). Wageningen Academic Publisher.

    Google Scholar 

  • van Zanten, H. H. E., van Ittersum, M. K., & De Boer, I. J. M. (2019). The role of farm animals in a circular food system. Global Food Security, 21, 18–22.

    Article  Google Scholar 

  • Wang, L. F., & Zijlstra, R. T. (2018). Prediction of bioavailable nutrients and energy. In P. J. Moughan & W. H. Hendriks (Eds.), Feed evaluation science (pp. 337–386). Wageningen Academic Publishers.

    Google Scholar 

  • Wang, L., Wang, Q., Liu, H. Z., & Liu, L. Y. D. (2013). Determining the contents of protein and amino acids in peanuts using near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 93, 118–124. https://doi.org/10.1002/jsfa.5738

    Article  CAS  Google Scholar 

  • Westad, F., Schmidt, A., & Kermin, M. (2008). Incorporating chemical band-assignment in near infrared spectroscopy regression models. Journal of Near Infrared Spectroscopy, 16, 265–273.

    Article  CAS  Google Scholar 

  • Weyer, L. G., & Lo, S. C. (2002). Spectra-structure correlations in the near-infrared. In Handbook of vibrational theory. Wiley.

    Google Scholar 

  • Wilfart, A., Montagne, L., Simmins, H., Noblet, J., & Milgen, J. (2007a). Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. The British Journal of Nutrition, 98(1), 54–62. https://doi.org/10.1017/S0007114507682981

    Article  CAS  PubMed  Google Scholar 

  • Wilfart, A., Montagne, L., Simmins, P. H., van Milgen, J., & Noblet, J. (2007b). Sites of nutrient digestion in growing pigs: Effect of dietary fiber. Journal of Animal Science, 85(4), 976–983. https://doi.org/10.2527/jas.2006-431

    Article  CAS  PubMed  Google Scholar 

  • Williams, P. C., & Cordeiro, H. M. (1979). The determination of protein and moisture in HRS wheat by near-infrared reflectance spectroscopy. II Influence of degrading factors, dockage and wheat variety. Cereal Foods World, 24, 460.

    Google Scholar 

  • Workman, J. J., & Weyer, L. (2012). Practical guide and spectral atlas for interpretive near-infrared spectroscopy. CRC Press Taylor and Francis.

    Book  Google Scholar 

  • Wu, J. G. G., Shi, C. H., & Zhang, X. M. (2002). Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crops Research, 75, 1–7. https://doi.org/10.1016/S0378-4290(02)00006-0

    Article  Google Scholar 

  • Yoshida, S., & Yoshida, H. (2003). Nondestructive analyses of unsaturated fatty acid species in dietary oils by attenuated total reflectance with Fourier transform IR spectroscopy. Biopolymers, 70(4), 604–613. https://doi.org/10.1002/bip.10505

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Rong, Z. Q., Shi, Y., Wu, J. G., & Shi, C. H. (2011). Prediction of the amino acid composition in brown rice using different sample status by near-infrared reflectance spectroscopy. Food Chemistry, 127, 275–281.

    Article  CAS  Google Scholar 

  • Zhbankov, R. G. (1992). Vibrational spectra and structure of mono- and polysaccharides. Journal of Molecular Structure, 275, 65–84.

    Article  CAS  Google Scholar 

  • Zhou, L. J., Zhang, L. Y., Zhang, E. X., Li, J. T., Yang, W. J., & Wang, Z. Y. (2012). Rapid determination of swine available energy and amino acids in corn distillers dried grains with solubles by near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 175, 198–202.

    Article  CAS  Google Scholar 

  • Zijlstra, R. T., Swift, M. L., Wang, L. F., Scott, T. A., & Edney, M. J. (2011). Near infrared reflectance spectroscopy accurately predict the digestible energy content of barley for pigs. Canadian Journal of Animal Science, 91, 301–304.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the European Union’s H2020 Program Feed-a-Gene project from grant agreement no 633531. The funding body had no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript. The authors are grateful for the technical assistance of Lisbeth Märcher and Winnie Østergaard Thomsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knud Erik Bach Knudsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knudsen, K.E.B., Noel, S., Jørgensen, H. (2023). Assessment of the Nutritive Value of Individual Feeds and Diets by Novel Technologies. In: Kyriazakis, I. (eds) Smart Livestock Nutrition. Smart Animal Production, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-22584-0_4

Download citation

Publish with us

Policies and ethics