Skip to main content

Evaluation of Different Treatment Methods of Natural Açai Fibers (Euterpe Oleracea Mart.) for Cement Composites

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 739 Accesses

Abstract

The use of natural lignocellulosic fibers (NLF) favors a series of properties, such as mechanical strength, when used in cementitious composites. Brazil, due to its climatic and geographical characteristics, has a variety of natural fibers that can be used in cementitious composites. The objective of this work was to evaluate the characteristics of different mortars in the hardened state reinforced with the addition of açaí fiber, exposed to three different methodologies of surface treatment: (i) immersion in a solution of sodium; (ii) potassium hydroxides and (iii) calcium hydroxides, all in a concentration of 10% in relation to the mass of water. Mortars with a mixture of 1:3 (cement: sand) ratio, in mass, were made to reinforce structures with additions 1.5, 3.0, 4.5, and 0% (reference) of the açaí fiber, in relation to the cement mass. The results were analyzed by statistical tests and demonstrated that the treatments with potassium hydroxide (KOH) showed the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Queiroz FA, Silva GRB, Barros LHV, Felipe RCTS (2021) Analysis of the degradation of reinforced plastic in fiberglass when exposed to sea water and sand. RSD 10(4):e19510413981. https://doi.org/10.33448/rsd-v10i4.13981

  2. Ferreira TRM, Silva AB, Dias F (2016) Mechanical properties evaluation of glass fiber and hollow glass bubble reinforced polyamide 6 composites. In: Paper presented at the CBECiMat, Natal, Rio Grande do Norte, 11–15 Nov 2016

    Google Scholar 

  3. Zhang P, Yang Y, Wang J, Jiao M, Ling Y (2020) Fracture models and effect of fibers on fracture properties of cementitious composites—A review. Materials 13(23):5495. https://doi.org/10.3390/ma13235495

    Article  CAS  Google Scholar 

  4. Savastano H, Agopyan V, Nolasco AM, Pimentel L (1999) Plant fibre reinforced cement components for roofing. Constr Build Mater 13(8):433–438. https://doi.org/10.1016/S0950-0618(99)00046-X

    Article  Google Scholar 

  5. Azevedo ARG, Klyuev S, Marvila MT, Vatin N, Alfimova N, Lima TES, Fediuk R, Olisov A (2020) Investigation of the potential use of curauá fiber for reinforcing mortars. Fibers 8(11):69. https://doi.org/10.3390/fib8110069

    Article  CAS  Google Scholar 

  6. Silva CC, Freire Júnior RCS, Ford ETLC, Dantas CM, Santos JKD, Aquino EMF (2018) Mechanical behavior and water absorption in sisal/glass hybrid composites. Matéria (Rio J.) 23(4):e-12246. https://doi.org/10.1590/s1517-707620180004.0580

  7. Kılınç AÇ, Durmuşkahya C, Seydibeyoğlu MÖ (2017) Natural fibers. Fiber technology for fiber-reinforced composites, Elsevier, New York, pp 209–235

    Google Scholar 

  8. Liu K, Zhang C, Madbouly SA (2016) Fiber reinforced plant oil-based composites. Bio-based plant oil polymers and composites, Elsevier, New York, pp 167–189

    Google Scholar 

  9. Marvila MT, Azevedo ARG, Cecchin D, Costa JM, Xavier GC, Carmo DF, Monteiro SN (2020) Durability of coating mortars containing açaí fibers. Case Stud Constr Mater 13:e00406. https://doi.org/10.1016/j.cscm.2020.e00406

    Article  Google Scholar 

  10. Azevedo ARG, Marvila MT, Tayeh BA, Cecchin D, Pereira AC, Monteiro SN (2021) Technological performance of açaí natural fibre reinforced cement-based mortars. J Build Eng 33:101675. https://doi.org/10.1016/j.jobe.2020.101675

    Article  Google Scholar 

  11. Lilargem D, Tambara Júnior LUD, Marvila MT, Pereira EC, Souza D, Azevedo ARG (2022) A review of the use of natural fibers in cement composites: concepts, applications and Brazilian history. Polymers 14(10):2043. https://doi.org/10.3390/polym14102043

    Article  CAS  Google Scholar 

  12. Jaramillo N, Hoyos D, Santa JF (2016) Compuestos de fibra de hoja de piña fabricados mediante moldeo por compresión por capas. Ingeniería y Competitividad 18(2):151–162. https://doi.org/10.25100/iyc.v18i2.2163

  13. Rupasinghe M, Bhasura HMP, Sathiparan N (2016) Use of coconut coir reinforced plaster mortar for strengthening of unreinforced masonry. In: Annual research symposium, faculty of engineering, vol. 10, University of Ruhuna, pp 1–5. https://doi.org/10.13140/RG.2.2.23160.19202

  14. Page J, Khadraoui F, Gomina M, Boutouil M (2019) Influence of different surface treatments on the water absorption capacity of flax fibres: rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Constr Build Mater 199:424–434. https://doi.org/10.1016/j.conbuildmat.2018.12.042

    Article  Google Scholar 

  15. Haba B, Agoudjil B, Boudenne A, Benzarti K (2017) Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr Build Mater 154:963–971. https://doi.org/10.1016/j.conbuildmat.2017.08.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. G. Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocha, D.L., Marvila, M.T., Cecchin, D., da Silva, M.C.C.S., Azevedo, A.R.G. (2023). Evaluation of Different Treatment Methods of Natural Açai Fibers (Euterpe Oleracea Mart.) for Cement Composites. In: Zhang, M., et al. Characterization of Minerals, Metals, and Materials 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22576-5_38

Download citation

Publish with us

Policies and ethics