Skip to main content

Prize-Collecting Asymmetric Traveling Salesman Problem Admits Polynomial Time Approximation Within a Constant Ratio

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2022)

Abstract

The Prize-Collecting Traveling Salesman Problem is an extension of the classic Traveling Salesman Problem, where each node of the given graph can be skipped for some known penalty. The goal is to construct a closed walk minimizing the total transportation costs and accumulated penalties. This problem has numerous applications in operations research, including sustainable production, supply chains, and drone routing. In this paper, we propose the first approximation algorithm with constant ratio for the asymmetric version of the problem on a complete weighted digraph, where the transportation costs fulfill the triangle inequality. Employing an arbitrary \(\alpha \)-approximation algorithm for the Asymmetric Traveling Salesman Problem (ATSP) as a building block, our algorithm establishes an \((\alpha +2)\)-approximation for the Prize-Collecting Asymmetric Traveling Salesman Problem. In particular, using the seminal recent Swensson-Traub \((22+\varepsilon )\)-approximation algorithm for the ATSP, we obtain \((24+\varepsilon )\)-approximate solutions for our problem.

This research was carried out under the financial support of the Russian Science Foundation, grant no. 22-21-00672, https://rscf.ru/project/22-21-00672/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-collecting Steiner tree and tsp. SIAM J. Comput. 40(2), 309–332 (2011). https://doi.org/10.1137/090771429

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989). https://doi.org/10.1002/net.3230190602

    Article  MathSciNet  MATH  Google Scholar 

  3. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M., Korula, N., Marx, D.: Prize-collecting steiner problems on planar graphs. In: Proceedings of the 2011 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1028–1049 (2011). https://doi.org/10.1137/1.9781611973082.79

  4. Bérubé, J.F., Gendreau, M., Potvin, J.Y.: A branch-and-cut algorithm for the undirected prize collecting traveling salesman problem. Networks 54(1), 56–67 (2009). https://doi.org/10.1002/net.20307

    Article  MathSciNet  MATH  Google Scholar 

  5. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993). https://doi.org/10.1007/BF01581256

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.H.H., Jiang, H., Jiang, S.H.C.: A unified PTAS for prize collecting TSP and steiner tree problem in doubling metrics. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pp. 15:1–15:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.15

  7. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. In: Symposium on New Directions and Recent Results in Algorithms and Complexity, p. 441 (1975)

    Google Scholar 

  8. Chung, S.H., Sah, B., Lee, J.: Optimization for drone and drone-truck combined operations: a review of the state of the art and future directions. Comput. Oper. Res. 123, 105004 (2020). https://doi.org/10.1016/j.cor.2020.105004

    Article  MathSciNet  MATH  Google Scholar 

  9. Climaco, G., Simonetti, L., Rosetti, I.: A branch-and-cut and MIP-based heuristics for the prize-collecting travelling salesman problem. RAIRO-Oper. Res. 55, S719–S726 (2021). https://doi.org/10.1051/ro/2020002

    Article  MathSciNet  MATH  Google Scholar 

  10. Dell’Amico, M., Maffioli, F., Värbrand, P.: On prize-collecting tours and the asymmetric travelling salesman problem. Int. Trans. Oper. Res. 2(3), 297–308 (1995). https://doi.org/10.1016/0969-6016(95)00010-5

    Article  MATH  Google Scholar 

  11. Dogan, O., Alkaya, A.F.: A novel method for prize collecting traveling salesman problem with time windows. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2021. LNNS, vol. 307, pp. 469–476. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85626-7_55

    Chapter  Google Scholar 

  12. Fischetti, M., Toth, P.: Vehicle routing: methods and studies, chap. In: An Additive Approach for the Optimal Solution of the Prize Collecting Traveling Salesman Problem, pp. 319–343, Elsevier (1988)

    Google Scholar 

  13. Goemans, M.X.: Combining approximation algorithms for the prize-collecting tsp (2009). https://doi.org/10.48550/ARXIV.0910.0553, https://arxiv.org/abs/0910.0553

  14. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995). https://doi.org/10.1137/S0097539793242618

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, Boston (2007). https://doi.org/10.1007/b101971

    Book  MATH  Google Scholar 

  16. Jackson, B.: Some remarks on arc-connectivity, vertex splitting, and orientation in graphs and digraphs. J. Graph Theory 12(3), 429–436 (1988). https://doi.org/10.1002/jgt.3190120314

    Article  MathSciNet  MATH  Google Scholar 

  17. Lahyani, R., Khemakhem, M., Semet, F.: A unified matheuristic for solving multi-constrained traveling salesman problems with profits. EURO J. Comput. Optim. 5(3), 393–422 (2016). https://doi.org/10.1007/s13675-016-0071-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Acad. Sci. Hung. 28(1), 129–138 (1976). https://doi.org/10.1007/BF01902503

    Article  MathSciNet  MATH  Google Scholar 

  19. Medeiros, Y.A.d., Goldbarg, M.C., Goldbarg, E.F.G.: Prize collecting traveling salesman problem with ridesharing. Revista de Informática Teórica e Aplicada 27(2), 13–29 (2020). https://doi.org/10.22456/2175-2745.94082

  20. Nguyen, V.H., Nguyen, T.T.T.: Approximating the asymmetric profitable tour. Electr. Notes Discrete Math. 36, 907–914 (2010). https://doi.org/10.1016/j.endm.2010.05.115

  21. Papadimitriou, C.: Euclidean TSP is NP-complete. Theoret. Comput. Sci. 4, 237–244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pedro, O., Saldanha, R., Camargo, R.: A tabu search approach for the prize collecting traveling salesman problem. Electr. Notes Discrete Math. 41, 261–268 (2013). https://doi.org/10.1016/j.endm.2013.05.101

    Article  Google Scholar 

  23. Rahbari, M., Jahed, A., Tehrani, N.S.: A hybrid simulated annealing algorithm for the prize collecting travelling salesman problem. In: 3rd International Conference on Industrial and Systems Engineering (ICISE 2017). Proceedings of 3rd International Conference on Industrial Engineering and Systems (ICISE 2017) (2017), https://hal.archives-ouvertes.fr/hal-01962060

  24. Sahni, S., Gonzales, T.: P-complete approximation problems. J. ACM 23, 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Svensson, O., Tarnawski, J., Végh, L.A.: A constant-factor approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 204–213. STOC 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3188745.3188824

  26. Traub, V., Vygen, J.: An Improved Approximation Algorithm for ATSP, In: STOC 2020: 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1–13. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3357713.3384233

  27. Vansteenwegen, P., Gunawan, A.: Orienteering Problems: Models and Algorithms for Vehicle Routing Problems with Profits. Springer Cham (2019). https://doi.org/10.1007/978-3-030-29746-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Khachay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khachay, M., Neznakhina, K., Rizhenko, K. (2022). Prize-Collecting Asymmetric Traveling Salesman Problem Admits Polynomial Time Approximation Within a Constant Ratio. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Optimization and Applications. OPTIMA 2022. Lecture Notes in Computer Science, vol 13781. Springer, Cham. https://doi.org/10.1007/978-3-031-22543-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22543-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22542-0

  • Online ISBN: 978-3-031-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics