Skip to main content

Modelling Contactless Ultrasound Treatment in a DC Casting Launder

  • Conference paper
  • First Online:
Light Metals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Ultrasonic processing can be performed without a vibrating probe by electromagnetic induction with a suitable frequency where resonance conditions can be established. This contactless method is suitable for high-temperature or reactive metal alloys providing purity of the melt and durability of the equipment. Hydrogen bubbles coming out of solution grow by rectified diffusion, and larger bubbles escape from the top surface leading to degassing. Violent collapses of the remaining smaller bubbles help grain refinement. In this study, the application of a contactless ‘top-coil’ device to continuous casting via a launder is considered. Resonance is achieved by the positioning of baffles on either side of the coil. Electromagnetic forces also cause strong stirring, increasing residence time. The process is modelled using time domain and frequency domain methods, and results for the proposed setup are compared with data obtained for the immersed sonotrode. Accuracy and sensitivity to process and model parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dybalska, A.; Caden, A.; Griffiths, W.D.; Nashwan, Z.; Bojarevics, V.; Djambazov, G.; Tonry, C.E.H.; Pericleous, K.A. Enhancement of Mechanical Properties of Pure Aluminium through Contactless Melt Sonicating Treatment. Materials 2021, 14, 4479, doi:https://doi.org/10.3390/ma14164479.

  2. Eskin, G.I.; Eskin, D.G. Ultrasonic Treatment of Light Alloy Melts, Second Edition; CRC Press, 2014; ISBN 978-1-4665-7798-5.

    Google Scholar 

  3. Subroto, T.; Eskin, D.G.; Beckwith, C.; Skalicky, I.; Roberts, D.; Tzanakis, I.; Pericleous, K. Structure Refinement Upon Ultrasonic Melt Treatment in a DC Casting Launder. JOM 2020, 72, 4071–4081, doi:https://doi.org/10.1007/s11837-020-04269-3.

  4. Tonry, C.E.H.; Bojarevics, V.; Djambazov, G.; Pericleous, K. Contactless Ultrasonic Treatment in Direct Chill Casting. JOM 2020, 72, 4082–4091, doi:https://doi.org/10.1007/s11837-020-04370-7.

  5. Beckwith, C.; Djambazov, G.; Pericleous, K.; Tonry, C. Comparison of Frequency Domain and Time Domain Methods for the Numerical Simulation of Contactless Ultrasonic Cavitation. Ultrasonics Sonochemistry 2022, 89, 106138, doi:https://doi.org/10.1016/j.ultsonch.2022.106138.

  6. Pericleous, K.; Bojarevics, V.; Djambazov, G.; Dybalska, A.; Griffiths, W.D.; Tonry, C. Contactless Ultrasonic Cavitation in Alloy Melts. Materials 2019, 12, 3610, doi:https://doi.org/10.3390/ma12213610.

  7. Beckwith, C.; Djambazov, G.; Pericleous, K.; Subroto, T.; Eskin, D.G.; Roberts, D.; Skalicky, I.; Tzanakis, I. Multiphysics Modelling of Ultrasonic Melt Treatment in the Hot-Top and Launder during Direct-Chill Casting: Path to Indirect Microstructure Simulation. Metals 2021, 11, 674, doi:https://doi.org/10.3390/met11050674.

  8. Subroto, T.; Eskin, D.G.; Beckwith, C.; Roberts, D.; Tzanakis, I.; Pericleous, K. Effect of Flow Management on Ultrasonic Melt Processing in a Launder upon DC Casting. In Proceedings of the Light Metals 2022; Eskin, D., Ed.; Springer International Publishing: Cham, 2022; pp. 649–654.

    Google Scholar 

  9. Trujillo, F.J. A Strict Formulation of a Nonlinear Helmholtz Equation for the Propagation of Sound in Bubbly Liquids. Part I: Theory and Validation at Low Acoustic Pressure Amplitudes. Ultrasonics Sonochemistry 2018, 47, 75–98, doi:https://doi.org/10.1016/j.ultsonch.2018.04.014.

  10. Louisnard, O. A Simple Model of Ultrasound Propagation in a Cavitating Liquid. Part I: Theory, Nonlinear Attenuation and Traveling Wave Generation. Ultrasonics Sonochemistry 2012, 19, 56–65, doi:https://doi.org/10.1016/j.ultsonch.2011.06.007.

  11. Jamshidi, R.; Brenner, G. Dissipation of Ultrasonic Wave Propagation in Bubbly Liquids Considering the Effect of Compressibility to the First Order of Acoustical Mach Number. Ultrasonics 2013, 53, 842–848, doi:https://doi.org/10.1016/j.ultras.2012.12.004.

  12. Plesset, M.S. The Dynamics of Cavitation Bubbles. Journal of Applied Mechanics 1949, 16, 277–282, doi:https://doi.org/10.1115/1.4009975.

  13. Löfstedt, R.; Barber, B.P.; Putterman, S.J. Toward a Hydrodynamic Theory of Sonoluminescence. Physics of Fluids A: Fluid Dynamics 1993, 5, 2911–2928, doi:https://doi.org/10.1063/1.858700.

  14. Keller, J.B.; Miksis, M. Bubble Oscillations of Large Amplitude. The Journal of the Acoustical Society of America 1980, 68, 628–633, doi:https://doi.org/10.1121/1.384720.

  15. Harkin, A.; Nadim, A.; Kaper, T.J. On Acoustic Cavitation of Slightly Subcritical Bubbles. Physics of Fluids 1999, 11, 274–287, doi:https://doi.org/10.1063/1.869878.

  16. Voller, V.R.; Prakash, C. A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. International Journal of Heat and Mass Transfer 1987, 30, 1709–1719, doi:https://doi.org/10.1016/0017-9310(87)90317-6.

  17. Djambazov, G.; Bojarevics, V.; Pericleous, K.; Croft, N. Finite Volume Solutions for Electromagnetic Induction Processing. Applied Mathematical Modelling 2015, 39, 4733–4745, doi:https://doi.org/10.1016/j.apm.2015.03.059.

  18. Lebon, G.S.B.; Tzanakis, I.; Djambazov, G.; Pericleous, K.; Eskin, D.G. Numerical Modelling of Ultrasonic Waves in a Bubbly Newtonian Liquid Using a High-Order Acoustic Cavitation Model. Ultrasonics Sonochemistry 2017, 37, 660–668, doi:https://doi.org/10.1016/j.ultsonch.2017.02.031.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Beckwith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beckwith, C., Djambazov, G., Pericleous, K. (2023). Modelling Contactless Ultrasound Treatment in a DC Casting Launder. In: Broek, S. (eds) Light Metals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22532-1_131

Download citation

Publish with us

Policies and ethics