Skip to main content

Molecular Dynamics Simulations of the Thermal Evolution of Voids in Cu Bulk and Grain Boundaries

  • Conference paper
  • First Online:
TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

The formation of voids in fcc metals is thought to result from the accumulation of vacancies, although the exact mechanisms underlying their formation, stabilization, and evolution remain unknown. Due to the stabilizing effect of H on voids, H embrittlement is regarded as a primary cause of self-induced voiding (SIV). In the present study, we looked into how voids evolve/decay in the bulk and at the grain boundaries of Cu during thermal annealing molecular dynamics simulations up to 800 K. At temperatures above 500 K, voids of up to 100 vacancies were found to totally dissolve. H was shown to have a stabilizing effect in the voids, with voids withstanding temperatures close to 750 K without dissociating. This was observed both in the bulk and at grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angsten T, Mayeshiba T, Wu H, Morgan M (2014) Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures. New J Phys 16:015,018

    Article  Google Scholar 

  2. Shang SL, Zhou BC, Wang WY, Ross AJ, Liu XL, Hu YJ, Fang HZ, Wang Y, Liu ZK (2016) A comprehensive first-principles study of pure elements: vacancy formation and migration energies and self-diffusion coefficients. Acta Mater 109:128–141

    Article  CAS  Google Scholar 

  3. Kiritani M (2000) Similarity and difference between fcc, bcc and hcp metals from the view point of point defect cluster formation. J Nucl Mater 276:41–49

    Article  CAS  Google Scholar 

  4. Zhang L, Lu C, Pei L, Zhao X, Zhang J, Tieu K (2017) Evaluation of mechanical properties of \(\Sigma \)5 (210)/[001] tilt grain boundary with self-interstitial atoms by molecular dynamics simulation. J Nanomaterials 2017

    Google Scholar 

  5. Zhang L, Shibuta Y, Lu C, Huang X (2019) Interaction between nano-voids and migrating grain boundary by molecular dynamics simulation. Acta Mater 173:206–224

    Article  CAS  Google Scholar 

  6. Mehrer H, Seeger A (1969) Interpretation of self-diffusion and vacancy properties in copper. Physica Status Solidi (B) 35(1):313–328

    Article  CAS  Google Scholar 

  7. Balogh Z, Schmitz G (2014) Physical Metallurgy. Elsevier, Amsterdam, pp 387–559

    Google Scholar 

  8. Aoki M, Saito H, Mori M, Ishida Y, Nagumo M (1994) Deformation microstructures of a low carbon steel characterized by tritium autoradiography and thermal desorption spectroscopy. Nippon Kinzoku Gakkai-Shi 58(10):1141–1148

    CAS  Google Scholar 

  9. Hernández E, Gillan M, Goringe C (1996) Linear-scaling density-functional-theory technique: the density-matrix approach. Phys Rev B 53(11):7147

    Article  Google Scholar 

  10. Mohtadi-Bonab M, Szpunar J, Razavi-Tousi S (2013) A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels. Eng Fail Anal 33:163–175

    Google Scholar 

  11. Liu XY, Kameda J, Anderegg J, Takaki S, Abiko K, McMahon C Jr (2008) Hydrogen-induced cracking in a very-high-purity high-strength steel. Mater Sci Eng A 492(1–2):218–220

    Article  Google Scholar 

  12. Martin M, Somerday B, Ritchie R, Sofronis P, Robertson I (2012) Hydrogen-induced intergranular failure in nickel revisited. Acta Mater 60(6–7):2739–2745

    Article  CAS  Google Scholar 

  13. Wang S, Martin ML, Sofronis P, Ohnuki S, Hashimoto N, Robertson IM (2014) Hydrogen-induced intergranular failure of iron. Acta Mater 69:275–282

    Article  CAS  Google Scholar 

  14. Shikama T, Pells G (1983) Radiation damage in pure and helium-doped \(\alpha \)-Al2O3 in the HVEM qualitative aspects of void and aluminium colloid formation. Philos Mag A 47(3):369–379

    Article  CAS  Google Scholar 

  15. Wang L, Birtcher R (1989) Radiation-induced formation of cavities in amorphous germanium. Appl Phys Lett 55(24):2494–2496

    Article  CAS  Google Scholar 

  16. Peng X, Zhu W, Chen K, Deng X, Wei Y (2016) Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading. J Appl Phys 119(16):165,901

    Article  Google Scholar 

  17. Sternlicht H, Rheinheimer W, Dunin-Borkowski RE, Hoffmann MJ, Kaplan WD (2019) Characterization of grain boundary disconnections in SrTiO3 part I: the dislocation component of grain boundary disconnections. J Mater Sci 54(5):3694–3709

    Article  CAS  Google Scholar 

  18. Han J, Srolovitz DJ, Salvalaglio M (2022) Disconnection-mediated migration of interfaces in microstructures: I. Continuum model. Acta Materialia 227:117,178

    Article  CAS  Google Scholar 

  19. Frommeyer L, Brink T, Freitas R, Frolov T, Dehm G, Liebscher CH (2022) Dual phase patterning during a congruent grain boundary phase transition in elemental copper. Nat Commun 13(1):1–11

    Article  Google Scholar 

  20. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, in’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD et al (2022) LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Phys Commun 271:108,171

    Article  CAS  Google Scholar 

  21. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  Google Scholar 

  22. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    Article  CAS  Google Scholar 

  23. Tuckerman ME, Alejandre J, López-Rendón R, Jochim AL, Martyna GJ (2006) A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble. J Phys A: Math Gen 39(19):5629

    Article  CAS  Google Scholar 

  24. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  25. Chen N, Niu LL, Zhang Y, Shu X, Zhou HB, Jin S, Ran G, Lu GH, Gao F (2016) Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten. Sci Rep 6:36,955

    Article  CAS  Google Scholar 

  26. Fukai Y, Mizutani M, Yokota S, Kanazawa M, Miura Y, Watanabe T (2003) Superabundant vacancy-hydrogen clusters in electrodeposited Ni and Cu. J Alloy Compd 356:270–273

    Article  Google Scholar 

  27. Fukumuro N, Adachi T, Yae S, Matsuda H, Fukai Y (2011) Influence of hydrogen on room temperature recrystallisation of electrodeposited Cu films: thermal desorption spectroscopy. Trans IMF 89(4):198–201

    Article  CAS  Google Scholar 

  28. Ganchenkova M, Yagodzinskyy Y, Borodin V, Hänninen H (2014) Effects of hydrogen and impurities on void nucleation in copper: simulation point of view. Philos Mag 94(31):3522–3548

    Article  CAS  Google Scholar 

  29. Yamaguchi M, Ebihara KI, Itakura M, Tsuru T, Matsuda K, Toda H (2019) First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries. Comput Mater Sci 156:368–375

    Article  CAS  Google Scholar 

  30. Zhou X, Ward D, Foster M, Zimmerman J (2015) An analytical bond-order potential for the copper-hydrogen binary system. J Mater Sci 50(7):2859–2875

    Article  CAS  Google Scholar 

  31. Zhou X, Ward D, Foster M (2016) An analytical bond-order potential for the aluminum copper binary system. J Alloy Compd 680:752–767

    Article  CAS  Google Scholar 

  32. Grau-Crespo R, Hamad S, Catlow CRA, De Leeuw N (2007) Symmetry-adapted configurational modelling of fractional site occupancy in solids. J Phys: Condens Matter 19(25):256,201

    Google Scholar 

  33. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng 18(1):015,012

    Article  Google Scholar 

  34. Stukowski A (2014) Computational analysis methods in atomistic modeling of crystals. JOM 66(3):399–407

    Article  CAS  Google Scholar 

  35. Wang H, Rodney D, Xu D, Yang R, Veyssiere P (2011) Pentavacancy as the key nucleus for vacancy clustering in aluminum. Phys Rev B 84(22):220,103

    Article  Google Scholar 

  36. Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Structural phase transformations in metallic grain boundaries. Nat Commun 4(1):1–7

    Article  Google Scholar 

  37. Kim SH, Yu J (2013) Heat-treatment to suppress the formation of kirkendall voids in Sn-3.5 Ag/Cu solder joints. Mater Lett 106:75–78

    Google Scholar 

  38. Pradhan P, Robi P, Roy SK (2012) Micro void coalescence of ductile fracture in mild steel during tensile straining. Frattura ed Integrità Strutturale 6(19)

    Google Scholar 

  39. Noell P, Carroll J, Hattar K, Clark B, Boyce B (2017) Do voids nucleate at grain boundaries during ductile rupture? Acta Mater 137:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. L. S. acknowledges funding by EPSRC (grant EP/P013503/1). V. F. would like to acknowledge funding by EPSRC (grant EP/L015862/1) as part of the CDT in molecular modeling and materials science. V.F. would also like to acknowledge funding by the UCL Doctoral School as part of the Yale-UCL collaborative student exchange program. Computational resources on ARCHER2 UK National Supercomputing Service (https://www.archer2.ac.uk) were provided via our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202, EP/R029431). V. F. and A. L. S. would like to thank Jack Strand and Tom Durrant for useful comments and help in calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Fotopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fotopoulos, V., O’Hern, C.S., Shluger, A.L. (2023). Molecular Dynamics Simulations of the Thermal Evolution of Voids in Cu Bulk and Grain Boundaries. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_93

Download citation

Publish with us

Policies and ethics