Skip to main content

The Effects of Thermal Treatment on the Properties and Performance of Hot Extruded Zn-Based Bioresorbable Alloy for Vascular Stenting Applications

  • 1048 Accesses

Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

A new series of zinc alloys is in development for bioresorbable stent implantation to alleviate the current materials’ long-term complications. Characterization and optimization of the microstructure and corresponding mechanical properties during manufacturing stages will help researchers meet the required values. In this study, the effect of hot extrusion on the Zn-Ag-Mn-Cu-Zr-Ti alloy is characterized. Additionally, thermal treatments at 390 °C for 15, 25, 40, 60, and 120 min were performed to evaluate the effect of intermetallic phase fractions on the corrosion resistance and mechanical strength. Quantitative analysis of X-ray diffraction data demonstrates that the fractions of the MnZn13, ZrZn22, and Zn0.75Ag0.15Mn0.10 intermetallic phases decrease as the thermal treatment time increases. Corrosion tests reveal a reduction in the corrosion rate of the extruded alloy after thermal treatment. The results of uniaxial compression tests and tensile tests show lower strength and higher ductility in all heat-treated conditions compared with the as-extruded condition.

Keywords

  • Zinc alloys
  • Biodegradable stent
  • Corrosion behavior
  • Mechanical properties

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   234.33
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR   307.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hanawa T (2009) Materials for metallic stents. J Artif Organs 12(2):73–79. https://doi.org/10.1007/s10047-008-0456-x

    CrossRef  CAS  Google Scholar 

  2. Heublein B (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6):651–656. https://doi.org/10.1136/heart.89.6.651

    CrossRef  CAS  Google Scholar 

  3. Grube E et al (2004) Six- and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer. Circulation 109(18):2168–2171. https://doi.org/10.1161/01.CIR.0000128850.84227.FD

    CrossRef  CAS  Google Scholar 

  4. Bünger CM et al (2007) Sirolimus-eluting biodegradable poly-l-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries. J Surg Res 139(1):77–82. https://doi.org/10.1016/j.jss.2006.07.035

    CrossRef  CAS  Google Scholar 

  5. Im SH, Jung Y, Kim SH (2017) Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater 60:3–22. https://doi.org/10.1016/j.actbio.2017.07.019

    CrossRef  CAS  Google Scholar 

  6. Bünger CM et al (2007) A biodegradable stent based on poly(L-Lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J Endovasc Ther 14(5):725–733. https://doi.org/10.1177/152660280701400518

    CrossRef  Google Scholar 

  7. Grabow N et al (2007) A biodegradable slotted tube stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 35(12):2031–2038. https://doi.org/10.1007/s10439-007-9376-9

    CrossRef  Google Scholar 

  8. Bowen PK et al (2016) Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater 5(10):1121–1140. https://doi.org/10.1002/adhm.201501019

    CrossRef  CAS  Google Scholar 

  9. Mostaed E, Sikora- M, Drelich JW, Vedani M (2018) Zinc-based alloys for degradable vascular stent applications. Acta Biomater 71:1–23. https://doi.org/10.1016/j.actbio.2018.03.005

    CrossRef  CAS  Google Scholar 

  10. Sun S, Ren Y, Wang L, Yang B, Li H, Qin G (2017) Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys. Mater Sci Eng A 701:129–133. https://doi.org/10.1016/j.msea.2017.06.037

    CrossRef  CAS  Google Scholar 

  11. ASTM (2004) Standard test methods for tension testing of metallic materials

    Google Scholar 

  12. ASTM (2019) Standard test methods of compression testing of metallic materials at room temperature

    Google Scholar 

  13. ASTM (2003) Standard test method for conducting potentiodynamic polarization resistance measurements

    Google Scholar 

  14. Mostaed E et al (2016) Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J Mech Behav Biomed Mater 60:581–602. https://doi.org/10.1016/j.jmbbm.2016.03.018

    CrossRef  CAS  Google Scholar 

  15. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25(18):2577–2582. https://doi.org/10.1002/adma.201300226

    CrossRef  CAS  Google Scholar 

  16. Zhang Y et al (2021) Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomater 121:695–712. https://doi.org/10.1016/j.actbio.2020.11.050

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

U.S. National Institute of Health—National Heart, Lung, and Blood Institute grant 1R01HL144739-01A1 is acknowledged for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw W. Drelich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Summers, H.D., Ardakani, M.S., Drelich, J.W. (2023). The Effects of Thermal Treatment on the Properties and Performance of Hot Extruded Zn-Based Bioresorbable Alloy for Vascular Stenting Applications. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_26

Download citation