Skip to main content

Ceramic Coatings for Metallic Interconnects and Metal Alloys Support for Solid Oxide Electrolysis Applications

  • Chapter
  • First Online:
High Temperature Electrolysis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aznam I,, Mah JCW, Muchtar A, Somalu MR, Ghazali MJ (2021) Electrophoretic deposition of (Cu,Mn,Co)3O4 spinel coating on SUS430 ferritic stainless steel: Process and performance evaluation for solid oxide fuel cell interconnect applications. J Eur Ceram Soc 41:1360–1373. Elsevier Ltd

    Google Scholar 

  • Belogolovsky I, Zhou X-D, Kurokawa H, Hou PY, Visco S, Anderson HU (2007) Effects of surface-deposited nanocrystalline chromite thin films on the performance of a ferritic interconnect alloy. J Electrochem Soc 154:B976

    Article  Google Scholar 

  • Bianco M, Jan Pieter Ouweltjes, and Jan Van herle. 2019. ‘Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18000 hours. Int J Hydrogen Energy 44:31406–31422. Elsevier Ltd

    Google Scholar 

  • Bianco M, Poitel S, Hong JE, Yang S, Wang ZJ, Willinger M, Steinberger-Wilckens R, Van herle J (2020) Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices. Corros Sci 165:108414

    Google Scholar 

  • Blum L, Fang Q, Groß-Barsnick SM, de Haart LB, Malzbender J, Menzler NH, Quadakkers WJ (2020) Long-term operation of solid oxide fuel cells and preliminary findings on accelerated testing. Int J Hydrogen Energy:1–10

    Google Scholar 

  • Bobruk M, Molin S, Chen M, Brylewski T, Hendriksen PV (2018) Sintering of MnCo2O4 coatings prepared by electrophoretic deposition. Mater Lett 213:394–398. Elsevier B.V.

    Google Scholar 

  • Brylewski T, Kucza W, Adamczyk A, Kruk A, Stygar M, Bobruk M, Dąbrowa J (2014) Microstructure and electrical properties of Mn1+xCo2−xO4 (0≤x≤1.5) spinels synthesized using EDTA-gel processes. Ceram Int 40:13873–13882

    Article  Google Scholar 

  • Brylewski T, Molin S, Marczyński M, Mazur K, Domaradzki OK, Gil A (2021) Influence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinel. Int J Hydrogen Energy 46:6775–6791

    Article  Google Scholar 

  • Chen G, Xin X, Luo T, Liu L, Zhou Y, Yuan C, Lin C, Zhan Z, Wang S (2015) Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications. J Power Sources 278:230–234. Elsevier B.V.

    Google Scholar 

  • Chesson DA, Zhu JH (2020) Effect of off-stoichiometry on electrical conductivity in Ni–Fe and Mn–Co spinel systems. J Electrochem Soc 167:124515. IOP Publishing

    Google Scholar 

  • Chevalier S, Larpin JP (2002) Formation of perovskite type phases during the high temperature oxidation of stainless steels coated with reactive element oxides. Acta Mater 50:3107–3116

    Article  Google Scholar 

  • Chu CL, Lee J, Lee TH, Cheng YN (2009) Oxidation behavior of metallic interconnect coated with La-Sr-Mn film by screen painting and plasma sputtering. Int J Hydrogen Energy 34:422–434. International Association for Hydrogen Energy

    Google Scholar 

  • Drewniak A, Koszelow D, Błaszczak P, Górnicka K, Jurak K, Javed H, Sabato AG, Jasiński P, Molin S, Smeacetto F (2021) Glass-ceramic sealants and steel interconnects: accelerated interfacial stability and reactivity tests at high temperature. Mater Des 212

    Google Scholar 

  • Falk-Windisch H, Claquesin J, Sattari M, Svensson J-E, Froitzheim J (2017) Co- and Ce/Co-coated ferritic stainless steel as interconnect material for Intermediate Temperature Solid Oxide Fuel Cells. J Power Sources 343:1–10

    Article  Google Scholar 

  • Fontana S, Amendola R, Chevalier S, Piccardo P, Caboche G, Viviani M, Molins R, Sennour M (2007) Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. J Power Sources 171:652–662

    Article  Google Scholar 

  • Fontana S, Chevalier S, Caboche G (2012) Metallic interconnects for solid oxide fuel cell: performance of reactive element oxide coating during 10, 20 and 30 months exposure. Oxid Met 78:307–328

    Article  Google Scholar 

  • Gambino LV, Magdefrau NJ, Aindow M (2015) Microstructural effects of the reduction step in reactive consolidation of manganese cobaltite coatings on Crofer 22 APU. Mater High Temp 32:142–147

    Article  Google Scholar 

  • Goebel C, Fefekos AG, Svensson JE, Froitzheim J (2018) Does the conductivity of interconnect coatings matter for solid oxide fuel cell applications?J Power Sources 383:110–114. Elsevier

    Google Scholar 

  • Goebel C, Berger R, Bernuy-Lopez C, Westlinder J, Svensson JE, Froitzheim J (2020) Long-term (4 year) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications. J Power Sources 449

    Google Scholar 

  • Goebel C, Asokan V, Khieu S, Svensson JE, Froitzheim J (2021) Self-healing properties of Ce/Co-coated stainless steel under simulated intermediate temperature solid oxide fuel cell conditions. Surf Coat Technol 428:127894. Elsevier B.V.

    Google Scholar 

  • Guo P, Lai Y, Shao Y, Zhang Y, Sun H, Wang Y (2018) Oxidation characteristics and electrical properties of doped Mn–Co spinel reaction layer for solid oxide fuel cell metal interconnects. Coatings 8

    Google Scholar 

  • Guo PY, Sun H, Shao Y, Ding JT, Li JC, Huang MR, Mao SY, et al (2020) The evolution of microstructure and electrical performance in doped Mn–Co and Cu–Mn oxide layers with the extended oxidation time. Corros Sci 172

    Google Scholar 

  • Hamaker HC (1940) Formation of a deposit by electrophoresis. Trans Faraday Soc 35:279

    Article  Google Scholar 

  • Han SY, Lewis JA, Shetty PP, Tippens J, Yeh D, Marchese TS, McDowell MT (2020) Porous metals from chemical dealloying for solid-state battery anodes. Chem Mater 32:2461–2469

    Article  Google Scholar 

  • Hassan MA, Mamat OB, Mehdi M (2020) Review: influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cells. Int J Hydrogen Energy 45:25191–25209. Elsevier Ltd

    Google Scholar 

  • Holt A, Kofstad P (1994) Electrical conductivity and defect structure of Cr2O3. II. reduced temperatures (<∼1000 °C). Solid State Ionics 69:137–143

    Article  Google Scholar 

  • Hosseini N, Abbasi MH, Karimzadeh F, Choi GM (2015) Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. J Power Sources 273:1073–1083. Elsevier B.V.

    Google Scholar 

  • Hou PY (2000) Sulfur segregation to growing Al2O3/alloy interfaces. J Mater Sci Lett 19:577–578

    Article  Google Scholar 

  • Hou PY, Stringer J (1995) The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales. Mater Sci Eng, A 202:1–10

    Article  Google Scholar 

  • Ignaczak J, Naumovich Y, Górnicka K, Jamroz J, Wróbel W, Karczewski J, Chen M, Jasiński P, Molin S (2020) Preparation and characterisation of iron substituted Mn1.7Cu1.3-xFexO4 spinel oxides (x = 0, 0.1, 0.3, 0.5). J Eur Ceram Soc 40:5920–5929

    Article  Google Scholar 

  • Javed H, Saunders T, Reece MJ, Zanchi E, Sabato AG, Boccaccini AR, Smeacetto F (2021) Pressure assisted flash sintering of Mn–Co based spinel coatings for solid oxide electrolysis cells (SOECs). Ceram Int 47:17804–17808

    Article  Google Scholar 

  • Jeong H, Roehrens D, Bram M (2020) Facile route for reactive coating of LaCrO3 on high-chromium steels as protective layer for solid oxide fuel cell applications. Mater Lett 258:126794. Elsevier B.V.

    Google Scholar 

  • Johnson C, Gemmen R, Orlovskaya N (2004) Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material. Compos B Eng 35:167–172

    Article  Google Scholar 

  • Kalinina E, Pikalova E (2021) Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology. Materials 14

    Google Scholar 

  • Koszelow D, Makowska M, Marone F, Karczewski J, Jasiński P, Molin S (2021) High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C. Corros Sci 189

    Google Scholar 

  • Lee S, Chu CL, Tsai MJ, Lee J (2010) High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Appl Surf Sci 256:1817–1824

    Article  Google Scholar 

  • Lee K, Yoon B, Kang J, Lee S, Bae J (2017) Evaluation of Ag-doped (MnCo)3O4 spinel as a solid oxide fuel cell metallic interconnect coating material. Int J Hydrogen Energy 42:29511–29517. Elsevier Ltd

    Google Scholar 

  • Li J, Xiong C, Li J, Yan D, Pu J, Chi B, Jian L (2017) Investigation of MnCu0.5Co1.5O4 spinel coated SUS430 interconnect alloy for preventing chromium vaporization in intermediate temperature solid oxide fuel cell. Int J Hydrogen Energy 42:16752–16759. Elsevier Ltd

    Google Scholar 

  • Liu Y, Fergus JW, Wang K, Dela Cruz C (2013) Crystal structure, chemical stabilities and electrical conductivity of Fe-doped manganese cobalt spinel oxides for SOFC interconnect coatings. J Electrochem Soc 160:F1316–F1321

    Article  Google Scholar 

  • Magdefrau, Neal J, Chen L, Sun EY, Yamanis J, Aindow M (2013) Formation of spinel reaction layers in manganese cobaltite-coated Crofer22 APU for solid oxide fuel cell interconnects. J Power Sources 227:318–326. Elsevier B.V.

    Google Scholar 

  • Magrasó A, Falk-Windisch H, Froitzheim J, Svensson JE, Haugsrud R (2015) Reduced long term electrical resistance in Ce/Co-coated ferritic stainless steel for solid oxide fuel cell metallic interconnects. Int J Hydrogen Energy 40:8579–8585

    Article  Google Scholar 

  • Mah JCW, Muchtar A, Somalu MR, Ghazali MJ (2017a) Metallic interconnects for solid oxide fuel cell: a review on protective coating and deposition techniques. Int J Hydrogen Energy 42:9219–9229

    Article  Google Scholar 

  • Mah JCW, Muchtar A, Somalu MR, Ghazali MJ, Raharjo J (2017b) Formation of sol–gel derived (Cu,Mn,Co)3O4 spinel and its electrical properties. Ceram Int 43:7641–7646. Elsevier Ltd

    Google Scholar 

  • Masi A, Bellusci M, McPhail SJ, Padella F, Reale P, Hong J-E, Steinberger-Wilckens R, Carlini M (2016) The effect of chemical composition on high temperature behaviour of Fe and Cu doped Mn–Co spinels. Ceram Int 43:2829–2835

    Article  Google Scholar 

  • Masi A, Bellusci M, McPhail SJ, Padella F, Reale P, Hong JE, Steinberger-Wilckens R, Carlini M (2017) Cu–Mn–Co oxides as protective materials in SOFC technology: the effect of chemical composition on mechanochemical synthesis, sintering behaviour, thermal expansion and electrical conductivity. J Eur Ceram Soc 37:661–669. Elsevier Ltd

    Google Scholar 

  • Menzler NH, Sebold D, Guillon O (2018) Post-test characterization of a solid oxide fuel cell stack operated for more than 30,000 hours: The cell. J Power Sources 374:69–76. Elsevier

    Google Scholar 

  • Mokhtari M, Wada T, Bourlot CL, Duchet-Rumeau J, Kato H, Maire E, Mary N (2020) Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800. Corros Sci 166:108468. Elsevier

    Google Scholar 

  • Molin S, Jasinski P, Mikkelsen L, Zhang W, Chen M, Hendriksen PV (2016) Low temperature processed MnCo2O4and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C. J Power Sources 336:408–418. Elsevier B.V

    Google Scholar 

  • Molin S, Sabato AG, Bindi M, Leone P, Cempura G, Salvo M, Cabanas Polo S, Boccaccini AR, Smeacetto F (2017) Microstructural and electrical characterization of Mn–Co spinel protective coatings for solid oxide cell interconnects. J Eur Ceram Soc 37:4781–4791. Elsevier Ltd

    Google Scholar 

  • Molin S, Sabato AG, Javed H, Cempura G, Boccaccini AR, Smeacetto F (2018) Co-deposition of CuO and Mn1.5Co1.5O4 powders on Crofer22APU by electrophoretic method: structural, compositional modifications and corrosion properties. Maters Lett 218:329–333. Elsevier B.V.

    Google Scholar 

  • Mosavi A, Ebrahimifar H (2020) Investigation of oxidation and electrical behavior of AISI 430 steel coated with Mn–Co–CeO2 composite. Int J Hydrogen Energy 45:3145–3162. Elsevier Ltd

    Google Scholar 

  • Paknahad P, Askari M, Ghorbanzadeh M (2014) Application of sol-gel technique to synthesis of copper-cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects. J Power Sources 266:79–87. Elsevier Ltd

    Google Scholar 

  • Pan, Yue, Shujiang Geng, Gang Chen, and Fuhui Wang. 2021a. ‘CuFe2O4/CuO coating for solid oxide fuel cell steel interconnects. International Journal of Hydrogen Energy 46:22942–22955. Elsevier Ltd

    Google Scholar 

  • Pan Y, Geng S, Chen G, Wang F (2021b) Thermal conversion process of CuFe2O4 coating on steel interconnect for solid oxide fuel cell applications. Mater Lett 297:129967. Elsevier B.V.

    Google Scholar 

  • Pandiyan S, El-Kharouf A, Steinberger-Wilckens R (2020) Formulation of spinel based inkjet inks for protective layer coatings in SOFC interconnects. J Colloid Interface Sci 579:82–95. Elsevier Inc.

    Google Scholar 

  • Park BK, Lee JW, Lee SB, Lim TH, Park SJ, Park CO, Song RH (2013) Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. Int J Hydrogen Energy 38:12043–12050. Elsevier Ltd

    Google Scholar 

  • Park M, Shin JS, Lee S, Kim HJ, An H, Ji HI, Kim H et al. (2018) Thermal degradation mechanism of ferritic alloy (Crofer 22 APU). Corros Sci 134:17–22

    Google Scholar 

  • Persson ÅH, Mikkelsen L, Hendriksen PV, Somers MAJ (2012) Interaction mechanisms between slurry coatings and solid oxide fuel cell interconnect alloys during high temperature oxidation. J Alloy Compd 521:16–29

    Article  Google Scholar 

  • Piccardo P, Gannon P, Chevalier S, Viviani M, Barbucci A, Caboche G, Amendola R, Fontana S (2007) ASR evaluation of different kinds of coatings on a ferritic stainless steel as SOFC interconnects. Surf Coat Technol 202:1221–1225

    Article  Google Scholar 

  • Puranen J, Pihlatie M, Lagerbom J, Bolelli G, Laakso J, Hyvärinen L, Kylmälahti M et al (2014) Post-mortem evaluation of oxidized atmospheric plasma sprayed Mn-Co-Fe oxide spinel coatings on SOFC interconnectors. Int J Hydrogen Energy 39:17284–17294

    Article  Google Scholar 

  • Pyo SS, Lee SB, Lim TH, Song RH, Shin DR, Hyun SH, Yoo YS (2011) Characteristic of (La0.8Sr0.2)0.98MnO 3 coating on Crofer22APU used as metallic interconnects for solid oxide fuel cell. Int J Hydrogen Energy 36:1868–1881. Elsevier Ltd

    Google Scholar 

  • Qi HB, Lees DG (2000) The effects of surface-applied oxide films containing varying amounts of yttria, chromia, or alumina on the high-temperature oxidation behavior of chromia-forming and alumina-forming alloys. Oxid Met 53:507–527

    Article  Google Scholar 

  • Qu W, Li J, Ivey DG (2004) Sol-gel coatings to reduce oxide growth in interconnects used for solid oxide fuel cells. J Power Sources 138:162–173

    Article  Google Scholar 

  • Quadakkers WJ, Piron-Abellan J, Shemet V, Singheiser L (2003) Metallic interconnectors for solid oxide fuel cells—a review. Mater High Temp 20:115–127

    Google Scholar 

  • Rauscher M, Besendörfer G, Roosen A (2008) Steel-sheet fabrication by tape casting. Int J Powder Metall (princeton, NJ) 44:39–48

    Google Scholar 

  • Sabato AG, Molin H, Javed H, Zanchi E, Boccaccini AR, Smeacetto F (2019) In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition. Ceram Int 45:19148–19157. Techna Group S.r.l.

    Google Scholar 

  • Sabato AG, Zanchi E, Molin S, Cempura G, Javed H, Herbrig K, Walter C, Boccaccini AR, Smeacetto F (2021) Mn–Co spinel coatings on Crofer 22 APU by electrophoretic deposition: Up scaling, performance in SOFC stack at 850 °C and compositional modifications. J Eur Ceram Soc 41:4496–4504. Elsevier Ltd

    Google Scholar 

  • Samal S (2016) High-temperature oxidation of metals. In: High-temperature corrosion, pp 11–17

    Google Scholar 

  • Seo HS, Jin G, Jun JH, Kim DH, Kim KY (2008) Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect. J Power Sources 178:1–8

    Article  Google Scholar 

  • Shaigan N, Ivey DG, Chen W (2008) Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects. J Power Sources 185:331–337

    Article  Google Scholar 

  • Shaigan N, Qu W, Ivey DG, Chen W (2010) A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources 195:1529–1542

    Google Scholar 

  • Smeacetto F, De Miranda A, Polo SC, Molin S, Boccaccini D, Salvo M, Boccaccini AR (2015) Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. J Power Sources 280, 379–386. Elsevier B.V.

    Google Scholar 

  • Spotorno R, Piccardo P, Perrozzi F, Valente S, Viviani M, Ansar A (2015) Microstructural and electrical characterization of plasma sprayed Cu–Mn oxide spinels as coating on metallic interconnects for stacking solid oxide fuel cells:728–734

    Google Scholar 

  • Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  Google Scholar 

  • Stevenson JW, Yang ZG, Xia GG, Nie Z, Templeton JD (2013) Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J Power Sources 231:256–263. Elsevier B.V.

    Google Scholar 

  • Sun Z, Wang R, Nikiforov AY, Gopalan S, Pal UB, Basu SN (2018) CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells. J Power Sources 378:125–133. Elsevier

    Google Scholar 

  • Talic B, Molin S, Hendriksen PV, Lein HL (2018b) Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corros Sci 138:189–199

    Article  Google Scholar 

  • Talic B, Molin S, Wiik K, Hendriksen PV, Lein HL (2017) Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J Power Sources 372:145–156. Elsevier

    Google Scholar 

  • Talic B, Hendriksen PV, Wiik K, Lein HL (2018a) Thermal expansion and electrical conductivity of Fe and Cu doped MnCo2O4spinel. Solid State Ionics 326:90–99. Elsevier

    Google Scholar 

  • Talic B, Hendriksen PV, Wiik K, Lein HL (2019) Diffusion couple study of the interaction between Cr 2 O 3 and MnCo 2 O 4 doped with Fe and Cu. Solid State Ionics 332:16–24. Elsevier

    Google Scholar 

  • Tan KH, Rahman HA, Taib H (2019) Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: a review. Int J Hydrogen Energy 44:30591–30605. Elsevier Ltd

    Google Scholar 

  • Taylor CD, Tossey BM (2021) High temperature oxidation of corrosion resistant alloys from machine learning. npj Mater Degrad 5:1–10. Springer US

    Google Scholar 

  • Thaheem I, Joh DW, Noh T, Im H-n, Lee KT (2021) Physico-electrochemical properties and long-term stability of Mn1.45-0.5xCo1.45-0.5xCuxY0.1O4 spinel protective coatings on commercial metallic interconnects for solid oxide fuel cells. J Ind Eng Chem 96:315–321

    Article  Google Scholar 

  • ThyssenKrupp VDM GmbH (2012) CROFER 22 H: oxidation-resistant ferritic stainless steel. Alloy Digest

    Google Scholar 

  • Thyssenkrupp (2001a) AISI430 Material Data Sheet

    Google Scholar 

  • Thyssenkrupp (2001b) AISI441 Material Data Sheet

    Google Scholar 

  • Tsai MJ, Chu CL, Lee S (2010) La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing. J Alloy Compd 489:576–581

    Article  Google Scholar 

  • Tseng HP, Yung TY, Liu CK, Cheng YN, Lee RY (2020) Oxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells. Int J Hydrogen Energy 45 12555–12564. Elsevier Ltd

    Google Scholar 

  • Tucker MC (2020) Progress in metal-supported solid oxide electrolysis cells: A review. Int J Hydrogen Energy. Elsevier Ltd.

    Google Scholar 

  • VDM-Metals (2010) Crofer 22 APU Material Data Sheet

    Google Scholar 

  • Waluyo NS, Park BK, Lee SB, Lim TH, Park SJ, Song RH, Lee JW (2014) (Mn, Cu)3O4-based conductive coatings as effective barriers to high-temperature oxidation of metallic interconnects for solid oxide fuel cells. J Solid State Electrochem 18:445–452

    Article  Google Scholar 

  • Wang R, Sun Z, Pal UB, Gopalan S, Basu SN (2018) Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect. J Power Sources 376:100–110. Elsevier

    Google Scholar 

  • Xiao J, Zhang W, Xiong C, Chi B, Pu J, Jian L (2016) Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects. Int J Hydrogen Energy 41:9611–9618

    Google Scholar 

  • Xin X, Wang S, Qian J, Lin C, Zhan Z (2011) Development of the spinel powder reduction technique for solid oxide fuel cell interconnect coating. Int J Hydrogen Energy 37:471–476. Elsevier Ltd

    Google Scholar 

  • You PF, Zhang X, Zhang HL, Zeng CL (2018) Oxidation behavior of NiFe2O4 spinel-coated interconnects in wet air. Oxid Metals 90:499–513. Springer US

    Google Scholar 

  • You P, Zhang X, Zhang H, Yang X, Zeng C (2020) Effect of Nb additions on the high-temperature performances of NiFe2O4 spinel coatings fabricated on ferritic stainless steel. Oxid Metals 93:465–482. Springer US

    Google Scholar 

  • Young J (2008) Chapter 1 The Nature of High Temperature Oxidation. Corrosion Series 1:1–27

    Google Scholar 

  • Young DJ (2016) Enabling theory. High temperature oxidation and corrosion of metals, pp 31–84

    Google Scholar 

  • Zanchi E, Sabato AG, Molin S, Cempura G, Boccaccini AR, Smeacetto F (2021) Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition. Mater Lett 286:129229

    Article  Google Scholar 

  • Zanchi E, Talic B, Sabato AG, Molin S, Boccaccini AR, Smeacetto F (2019) Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: processing and oxidation performance of Fe-doped Mn–Co coatings for solid oxide cell interconnects. J Eur Ceram Soc 39:3768–3777. Elsevier

    Google Scholar 

  • Zanchi E, Molin S, Sabato AG, Talic B, Cempura G, Boccaccini AR, Smeacetto F (2020) Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: microstructural and electrical characterization. J Power Sources 455:227910. Elsevier B.V.

    Google Scholar 

  • Zhu JH, Zhang Y, Basu A, Lu ZG, Paranthaman M, Lee DF, Payzant EA (2004) LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications. Surf Coat Technol 177–178:65–72

    Article  Google Scholar 

  • Zhu JH, Lewis MJ, Du SW, Li YT (2015) CeO2-doped (Co, Mn)3O4 coatings for protecting solid oxide fuel cell interconnect alloys. Thin Solid Films 596:179–184

    Article  Google Scholar 

  • Zhu JH, Chesson DA, Yu YT (2021) Review—(Mn, Co) 3 O 4 -based spinels for SOFC interconnect coating application. J Electrochem Soc 168:114519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Smeacetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanchi, E. et al. (2023). Ceramic Coatings for Metallic Interconnects and Metal Alloys Support for Solid Oxide Electrolysis Applications. In: Laguna-Bercero, M.A. (eds) High Temperature Electrolysis. Lecture Notes in Energy, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-22508-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22508-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22507-9

  • Online ISBN: 978-3-031-22508-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics