Skip to main content

Oxygen Electrode Materials for Solid Oxide Electrolysis Cells (SOECs)

  • Chapter
  • First Online:
High Temperature Electrolysis

Part of the book series: Lecture Notes in Energy ((LNEN,volume 95))

  • 1050 Accesses

Abstract

As explained in previous sections, SOECs generally operate at high temperature. A high operating temperature increases the efficiency of SOECs, but it also accelerates the degradation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler SB (2000) Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135:603–612

    Article  Google Scholar 

  • Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143:3554–3564

    Article  Google Scholar 

  • Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4844

    Article  Google Scholar 

  • Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Efficient reduction of CO[sub 2] in a solid oxide electrolyzer. Electrochem Solid-State Lett 11:B167

    Google Scholar 

  • Bo Y, Wenqiang Z, Jingming X, Jing C (2008) Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC. Int J Hydrogen Energy 33:6873−77

    Google Scholar 

  • Boukamp BA, Bouwmeester HJM (2003) Interpretation of the Gerischer impedance in solid state ionics. Solid State Ionics 157:29–33

    Article  Google Scholar 

  • Burye TE, Tang H, Nicholas JD (2016) The effect of precursor solution desiccation or nano-ceria pre-infiltration on various La0.6Sr0.4FeyCo1-yO3-xinfiltrate compositions. J Electrochem Soc 163:F1017–F1022

    Article  Google Scholar 

  • Carlson RL, Kardomateas GA, Craig JI (2012) Ceramic Materials

    Google Scholar 

  • Chauveau F, Mougin J, Bassat JM, Mauvy F, Grenier JC (2010) A new anode material for solid oxide electrolyser: the neodymium nickelate Nd2NiO4+δ. J Power Sour 195:744–749

    Article  Google Scholar 

  • Chen K, Jiang SP (2011) Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells. Int J Hydrogen Energy 36:10541–10549

    Article  Google Scholar 

  • Choi S, Yoo S, Shin J-Y, Kim G (2011) High Performance SOFC cathode prepared by infiltration of Lan + 1NinO3n + 1 (n = 1, 2, and 3) in Porous YSZ. J Electrochem Soc 158:B995

    Article  Google Scholar 

  • Choi M-B, Singh B, Wachsman ED, Song S-J (2013) Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells. J Power Sour 239:361–373

    Article  Google Scholar 

  • Chen T, Liu M, Yuan C, Zhou Y, Ye X, Zhan Z, Xia C, Wang S (2015) High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+δ impregnated scandia stabilized zirconia oxygen electrode. J Power Sour 276:1–6

    Article  Google Scholar 

  • Daroukh M, Tietz F, Sebold D, Buchkremer HP (2014) Post-test analysis of electrode-supported solid oxide electrolyser cells. Ionics 21:1039–1043

    Article  Google Scholar 

  • Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev 114:10697–10734

    Article  Google Scholar 

  • Eguchi K, Hatagishi T, Arai H (1996) Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte. Solid State Ionics 86–88:1245–1249

    Article  Google Scholar 

  • Gamble S (2011) Fabrication–microstructure–performance relationships of reversible solid oxide fuel cell electrodes–review. Mater Sci Technol 27:1485–1497

    Article  Google Scholar 

  • Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA (2016) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci

    Google Scholar 

  • Gerischer H (1951) Alternating-current polarization of electrodes with a potential-determining step for equilibrium potential. Z Phys Chem 198:286

    Article  Google Scholar 

  • Gómez SY, Gurauskis J, Øygarden V, Hotza D, Grande T, Wiik K (2016) Synthesis and oxygen transport properties of La2−ySryNi1−xMoxO4+δ. Solid State Ionics 292:38–44

    Article  Google Scholar 

  • Graves C, Ebbesen SD, Jensen SH, Simonsen SB, Mogensen MB (2015) Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat Mater 14:239–244

    Article  Google Scholar 

  • Hanifi AR, Torabi A, Shinbine A, Etsell TH, Sarkar P (2011a) Fabrication of thin porous electrolyte-supported tubular fuel cells using slip casting. J Ceram Process Res 12:336–342

    Google Scholar 

  • Hanifi AR, Torabi A, Etsell TH, Yamarte L, Sarkar P (2011b) Porous electrolyte-supported tubular micro-SOFC design. Solid State Ionics 192:368–371

    Article  Google Scholar 

  • Hanifi AR, Shinbine A, Etsell TH, Sarkar P (2012a) Development of monolithic YSZ porous and dense layers through multiple slip casting for ceramic fuel cell applications. Int J Appl Ceram Technol 9:1011–1021

    Article  Google Scholar 

  • Hanifi AR, Zazulak M, Etsell TH, Sarkar P (2012b) Effects of calcination and milling on surface properties, rheological behaviour and microstructure of 8mol% yttria-stabilised zirconia (8 YSZ). Powder Technol 231:35–43

    Article  Google Scholar 

  • Hanifi AR, Laguna-Bercero MA, Etsell TH, Sarkar P (2014a) The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes. Int J Hydrogen Energy 39:8002–8008

    Article  Google Scholar 

  • Hanifi AR, Paulson S, Torabi A, Shinbine A, Tucker MC, Birss V, Etsell TH, Sarkar P (2014b) Slip-cast and hot-solution infiltrated porous yttria stabilized zirconia (YSZ) supported tubular fuel cells. J Power Sour 266:121–131

    Article  Google Scholar 

  • Hanifi AR, Zahiri B, Mitlin D, Vincent AL, Etsell TH, Sarkar P (2016) Effects of washing and calcination–milling on ionic release and surface properties of yttria stabilized zirconia. Ceram Int 42:6755–6760

    Article  Google Scholar 

  • He F, Song D, Peng R, Meng G, Yang S (2010) Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3−δ. J Power Sour 195:3359–3364

    Article  Google Scholar 

  • Jensen SH, Larsen PH, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy 32:3253–3257

    Article  Google Scholar 

  • Jiang SP (2012) Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int J Hydrogen Energy 37:449–470

    Article  Google Scholar 

  • Jiang W, Lü Z, Wei B, Wang ZH, Zhu XB, Tian YT, Huang XQ, Su WH (2014) Sm0.5Sr0.5CoO3-Sm0.2Ce 0.8O1.9 composite oxygen electrodes for solid oxide electrolysis cells. Fuel Cells 14:76–82

    Article  Google Scholar 

  • Kaiser A, Monreal E, Stolten D (1997) Preparation techniques and materials for long term stable SOFC—single cell membranes. Ionics 3:143–148

    Article  Google Scholar 

  • Kim-Lohsoontorn P, Brett DJL, Laosiripojana N, Kim YM, Bae JM (2010) Performance of solid oxide electrolysis cells based on composite La0.8Sr0.2MnO3−δ–yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen electrodes. Int J Hydrogen Energy 35:3958–3966

    Article  Google Scholar 

  • Kim SJ, Choi GM (2014) Stability of LSCF electrode with GDC interlayer in YSZ-based solid oxide electrolysis cell. Solid State Ionics 262:303–306

    Article  Google Scholar 

  • Klemensø T, Thydén K, Chen M, Wang H-J (2010) Stability of Ni–yttria stabilized zirconia anodes based on Ni-impregnation. J Power Sour 195:7295–7301

    Article  Google Scholar 

  • Laguna-Bercero MA, Hanifi AR, Etsell TH, Sarkar P, Orera VM (2015) Microtubular solid oxide fuel cells with lanthanum strontium manganite infiltrated cathodes. Int J Hydrogen Energy 40:5469–5474

    Article  Google Scholar 

  • Laguna-Bercero MA, Kinadjan N, Sayers R, El Shinawi H, Greaves C, Skinner SJ (2011) Performance of La2–xSrxCo0.5Ni0.5O4±δ as an oxygen electrode for solid oxide reversible cells. Fuel Cells 11:102–107

    Article  Google Scholar 

  • Laguna-Bercero MA, Hanifi AR, Monzón H, Cunningham J, Etsell TH, Sarkar P (2014) High performance of microtubular solid oxide fuel cells using Nd2NiO4+δ-based composite cathodes. J Mater Chem A 2:9764–9770

    Article  Google Scholar 

  • Li J, Zhong C, Meng X, Wu H, Nie H, Zhan Z, Wang S (2014) Sr2Fe1.5Mo0.5O6-δ−Zr0.84Y0.16O2-δ materials as oxygen electrodes for solid oxide electrolysis cells. Fuel Cells 14:1046–1049

    Article  Google Scholar 

  • Li Y, Zhang S-L, Li C-X, Wei T, Yang G-J, Li C-J, Liu M (2016) La2NiO4+δ infiltration of plasma-sprayed LSCF coating for cathode performance improvement. J Therm Spray Technol 25:392–400

    Article  Google Scholar 

  • Liang M, Bo Y, Wen M, Chen J, Jingming X, Zhai Y (2009) Preparation of LSM–YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism. J Power Sour 190:341–345

    Article  Google Scholar 

  • Liu Q, Yang C, Dong X, Chen F (2010a) Perovskite Sr2Fe1.5Mo0.5O 6-δ as electrode materials for symmetrical solid oxide electrolysis cells. Int J Hydrogen Energy 35:10039–10044

    Article  Google Scholar 

  • Liu Q, Yang C, Dong X, Chen F (2010b) Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells. Int J Hydrogen Energy 35:10039–10044

    Article  Google Scholar 

  • Meng X, Shen Y, Xie M, Yin Y, Yang N, Ma Z-F, João C, da Costa D, Liu S (2016) Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3−δ oxygen electrode for flexible power generation and hydrogen production. J Power Sour 306:226–232

    Article  Google Scholar 

  • Navarrete L, Solís C, Serra JM (2015) Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. J Mater Chem A 3:16440–16444

    Article  Google Scholar 

  • Ni M (2009) Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production. Int J Hydrogen Energy 34:7795–7806

    Article  Google Scholar 

  • Nicollet C, Flura A, Vibhu V, Rougier A, Bassat JM, Grenier JC (2015) La2NiO4+δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: electrochemical performance and impedance modelling. J Power Sour 294:473–482

    Article  Google Scholar 

  • Nicollet C, Flura A, Vibhu V, Rougier A, Bassat J-M, Grenier J-C (2016) An innovative efficient oxygen electrode for SOFC-Pr6O11 infiltrated into Gd-doped ceria backbone. Int J Hydrogen Energy

    Google Scholar 

  • Ogier T, Mauvy F, Bassat JM, Laurencin J, Mougin J, Grenier JC (2015) Overstoichiometric oxides Ln2NiO4+δ (Ln = La, Pr or Nd) as oxygen anodic electrodes for solid oxide electrolysis application. Int J Hydrogen Energy 40:15885–15892

    Article  Google Scholar 

  • Park J, Kim D, Baek J, Yoon Y-J, Pei-Chen S, Lee S (2018) Numerical study on electrochemical performance of low-temperature micro-solid oxide fuel cells with submicron platinum electrodes. Energies 11:1204

    Article  Google Scholar 

  • Patcharavorachot Y, Arpornwichanop A, Chuachuensuk A (2008) Electrochemical study of a planar solid oxide fuel cell: role of support structures. J Power Sour 177:254–261

    Article  Google Scholar 

  • Patro PK, Delahaye T, Bouyer E (2010) Development of Pr0.58Sr0.4Fe0.8Co0.2O3−δ–GDC composite cathode for solid oxide fuel cell (SOFC) application. Solid State Ionics 181:1378–1386

    Article  Google Scholar 

  • Prestat M, Morandi A, Heel A, Holzer L, Holtappels P, Graule TJ (2010) Effect of graphite pore former on oxygen electrodes prepared with La0.6Sr0.4CoO3−δ nanoparticles. Electrochem Commun 12:292–295

    Article  Google Scholar 

  • Samson A, Søgaard M, Knibbe R, Bonanos N (2011) High performance cathodes for solid oxide fuel cells prepared by infiltration of La0.6Sr0.4CoO3−δ into Gd-Doped Ceria. J Electrochem Soc 158:B650–B659

    Article  Google Scholar 

  • Schiller G, Ansar A, Lang M, Patz O (2009) High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC). J Appl Electrochem 39:293–301

    Article  Google Scholar 

  • Shah M, Barnett SA (2008) Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3−δ into Gd-Doped Ceria. Solid State Ionics 179:2059–2064

    Article  Google Scholar 

  • Shahrokhi S, Babaei A, Zamani C (2018) Reversible operation of La0·8Sr0·2MnO3 oxygen electrode infiltrated with Ruddlesden-Popper and perovskite lanthanum nickel cobaltite. Int J Hydrogen Energy 43:23091–23100

    Article  Google Scholar 

  • Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2008) Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells 8:303–312

    Article  Google Scholar 

  • Sholklapper TZ, Chun L, Jacobson CP, Visco SJ, De Jonghe LC (2006) LSM-infiltrated solid oxide fuel cell cathodes. Electrochem Solid-State Lett 9:A376

    Article  Google Scholar 

  • Sholklapper TZ, Radmilovic V, Jacobson CP, Visco SJ, De Jonghe LC (2007) Synthesis and stability of a nanoparticle-infiltrated solid oxide fuel cell electrode. Electrochem Solid-State Lett 10:B74

    Article  Google Scholar 

  • Singhal SC, Kendall K (2003) Introduction to SOFCs. In: Singhal SC, Kendall K (eds) High temperature and solid oxide fuel cells, Elsevier Science, Amsterdam

    Google Scholar 

  • Song Y, Zhang X, Zhou Y, Jiang Q, Guan F, Lv H, Wang G, Bao X (2018) Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. Energy Storage Mater 13:207–214

    Article  Google Scholar 

  • Sun X, Chen M, Liu Y-L, Hjalmarsson P, Ebbesen SD, Jensen SH, Mogensen MB, Hendriksen PV (2013) Durability of solid oxide electrolysis cells for syngas production. J Electrochem Soc 160:F1074–F1080

    Article  Google Scholar 

  • Tan Y, Duan N, Wang A, Yan D, Chi B, Wang N, Pu J, Li J (2016) Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3-δ oxygen electrode for intermediate temperature solid oxide electrolysis cells. J Power Sour 305:168–174

    Article  Google Scholar 

  • Tao Y, Nishino H, Ashidate S, Kokubo H, Watanabe M, Uchida H (2009) Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs. Electrochim Acta 54:3309–3315

    Article  Google Scholar 

  • Tietz F, Sebold D, Brisse A, Schefold J (2013) Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J Power Sour 223:129–135

    Article  Google Scholar 

  • Torabi A, Hanifi AR, Etsell TH, Sarkar P (2011) Effects of porous support microstructure on performance of infiltrated electrodes in solid oxide fuel cells. J Electrochem Soc 159:B201–B210

    Article  Google Scholar 

  • Vibhu V, Vinke IC, Eichel RA, Bassat JM, de Haart LGJ (2019a) La2Ni1−xCoxO4+δ (x = 0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells. J Power Sour 444:227292

    Google Scholar 

  • Vibhu V, Vinke IC, Eichel RA, de Haart LGJ (2021a) Cobalt substituted Pr2Ni1-xCoxO4+δ (x = 0, 0.1, 0.2) oxygen electrodes: impact on electrochemical performance and durability of solid oxide electrolysis cells. J Power Sour 482:228909

    Google Scholar 

  • Vibhu V, Yildiz S, Vinke IC, Eichel R-A, Bassat J-M, de Haart LGJ (2019b) High performance LSC infiltrated LSCF oxygen electrode for high temperature steam electrolysis application. J Electrochem Soc 166:F102–F108

    Article  Google Scholar 

  • Vibhu V, Rougier A, Nicollet C, Flura A, Fourcade S, Penin N, Grenier J-C, Bassat J-M (2016) Pr4Ni3O10+δ: a new promising oxygen electrode material for solid oxide fuel cells. J Power Sour 317:184–193

    Article  Google Scholar 

  • Vibhu V, Vinke IC, Eichel R-A, De Haart LGJ (2021b) Performance and stability of nickelates based oxygen electrodes for solid oxide cells. ECS Trans 103:1505–1515

    Article  Google Scholar 

  • Vincent AL, Hanifi AR, Luo J-L, Chuang KT, Sanger AR, Etsell TH, Sarkar P (2012) Porous YSZ impregnated with La0.4Sr0.5Ba0.1TiO3 as a possible composite anode for SOFCs fueled with sour feeds. J Power Sour 215:301–306

    Article  Google Scholar 

  • Vincent AL, Hanifi AR, Zazulak M, Luo J-L, Chuang KT, Sanger AR, Etsell T, Sarkar P (2013) Preparation and characterization of an solid oxide fuel cell tubular cell for direct use with sour gas. J Power Sour 240:411–416

    Article  Google Scholar 

  • Virkar AV (2010) Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int J Hydrogen Energy 35:9527–9543

    Article  Google Scholar 

  • Vohs JM, Gorte RJ (2009) High-performance SOFC cathodes prepared by infiltration. Adv Mater 21:943–956

    Article  Google Scholar 

  • Wang W, Gorte RJ, Vohs JM (2008) Analysis of the performance of the electrodes in a natural gas assisted steam electrolysis cell. Chem Eng Sci 63:765–769

    Article  Google Scholar 

  • Wang W, Huang Y, Jung S, Vohs JM, Gorte RJ (2006) A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes. J Electrochem Soc 153:A2066

    Article  Google Scholar 

  • Wang Z, Mori M, Araki T (2010) Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300 Nm3 h−1. Int J Hydrogen Energy 35:4451–4458

    Article  Google Scholar 

  • Wei B, Chen K, Zhao L, Ai N, Lü Z, Jiang SP (2013) SmBaCo2O5-δ as high efficient oxygen electrode of solid oxide electrolysis cells. In: ECS Transactions, pp 3189–96

    Google Scholar 

  • Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics 22:241–246

    Article  Google Scholar 

  • Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45:2423–2435

    Article  Google Scholar 

  • Zheng Y, Li Q, Chen T, Xu C, Wang WG (2015) Quantitative contribution of resistance sources of components to stack performance for solid oxide electrolysis cells. J Power Sour 274:736–740

    Article  Google Scholar 

  • Zheng Y, Xu C, Wang WG, Guo L (2016) Quantitative electrochemical contributions of cells and stacked interfacial contacts in solid-oxide electrolysis cells. Int J Hydrogen Energy 41:4538–4545

    Article  Google Scholar 

  • Zheng H, Tian Y, Zhang L, Chi B, Jian P, Jian L (2018) La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells. J Power Sour 383:93–101

    Article  Google Scholar 

  • Zhang S-L, Wang H, Lu MY, Li C-X, Li C-J, Barnett SA (2019) Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-temperature solid oxide electrochemical cells. J Power Sour 426:233–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Bassat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vibhu, V., Hanifi, A.R., Etsell, T.H., Bassat, JM. (2023). Oxygen Electrode Materials for Solid Oxide Electrolysis Cells (SOECs). In: Laguna-Bercero, M.A. (eds) High Temperature Electrolysis. Lecture Notes in Energy, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-22508-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22508-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22507-9

  • Online ISBN: 978-3-031-22508-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics