Skip to main content

Stack/System Development for High-Temperature Electrolysis

  • Chapter
  • First Online:
High Temperature Electrolysis

Part of the book series: Lecture Notes in Energy ((LNEN,volume 95))

  • 1139 Accesses

Abstract

In order to design a high performing and durable SOE stack or system, all the relevant length-scales should be addressed using different approaches and tools, and all the components of the Balance-of-Plant need to be properly dimensioned and integrated.  This chapter adresses the requirements of building an SOE stack and system with an optimised performance and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicart J et al (2022) Performance evaluation of a 4-stack solid oxide module in electrolysis mode. Int J Hydrogen Energy 47(6):3568–3579

    Article  Google Scholar 

  • Arslan O, Acikkalp E, Genc G (2022) A multi-generation system for hydrogen production through the high-temperature solid oxide electrolyzer integrated to 150 MW coal-fired steam boiler. Fuel 315:123201

    Article  Google Scholar 

  • Barsoukov E, Macdonald JR (2013) In: Impedance spectroscopy theory, experiment, and applications. Wiley Inc

    Google Scholar 

  • Blanco H, Faaij A (2018) A review at the role of storage in energy systems with a focus on power to gas and long-term storage. Renew Sustain Energy Rev 81:1049–1086

    Article  Google Scholar 

  • Brisse A, Schefold J, Zahid M (2008) High temperature water electrolysis in solid oxide cells. Int J Hydrogen Energy 33(20):5375–5382

    Article  Google Scholar 

  • Dutta S (1990) Technology assessment of advanced electrolytic hydrogen production. Int J Hydrogen Energy 15(6):379–386

    Article  Google Scholar 

  • Garðarsson JS, Vang P, Højgaard S, Nielsen R (2016) Predicting the price of solid oxide electrolysers (SOECs). DTU Report

    Google Scholar 

  • Hauch A, Küngas R, Blennow P, Hansen AB, Hansen JB, Mathiesen BV, Mogensen MB (2020) Recent advances in solid oxide cell technology for electrolysis. Science 370(6513):eaba6118

    Google Scholar 

  • Jeanmonod G, Diethelm S, Van herle J (2021) Poisoning effects of chlorine on a solid oxide cell operated in co-electrolysis. J Power Sour 506:230247

    Google Scholar 

  • Kendall K, Minh NQ, Singhal SC (2003) Cell and stack designs. In: High-temp. solid oxide fuel cells fundamental designs and applications. Elsevier, pp 197–228

    Google Scholar 

  • Königshofer B et al (2021) Performance assessment and evaluation of SOC stacks designed for application in a reversible operated 150 kW rSOC power plant. Appl Energy 283:116372

    Article  Google Scholar 

  • Küngas R et al (2017) eCOs—a commercial CO2 electrolysis system developed by Haldor Topsoe. ECS Trans 78(1):2879–2884

    Article  Google Scholar 

  • Larsen PH et al (2001) Status of the Danish SOFC program. ECS Proc 2001–16(1):28

    MathSciNet  Google Scholar 

  • Lehtinen T, Noponen M (2021) Solid oxide electrolyser demonstrator development at Elcogen. ECS Trans 103:1939

    Article  Google Scholar 

  • Léon A, Micero A, Ludwig B, Brisse A (2021) Effect of scaling-up on the performance and degradation of long-term operated electrolyte supported solid oxide cell, stack and module in electrolysis mode. J Power Sour 510:230346

    Article  Google Scholar 

  • Liten (2022) Liten—An experimental platform to test rSOC modules up to 120kWDC set up at CEA. https://liten.cea.fr/cea-tech/liten/english/Pages/Medias/News/Hydrogen-Vector/An-experimental-platform-to-test-rSOC-modules.aspx. Accessed 25 Jul 2022

  • MegaSyn (2022) Home—MegaSyn English (2022). https://www.megasyn.eu/. Accessed 25 Jul 2022

  • Mehariya S et al. (2019) Fischer-Tropsch synthesis of syngas to liquid hydrocarbons. Chapter 7 in Lignocellulosic biomass to liquid biofuels, pp 217–248

    Google Scholar 

  • Mougin J (2015) Hydrogen production by high-temperature steam electrolysis. In: Subramani V, Basile A, Veziroglu TN (eds) Compendium of hydrogen energy, Woodhead Publishing, pp 225–253

    Google Scholar 

  • Moussaoui H, Laurencin J, Gavet Y, Delette G, Hubert M, Cloetens P, Le Bihan T, Debayle J (2018) Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions. Comput Mater Sci 143:262–276

    Article  Google Scholar 

  • Moussaoui H, Sharma RK, Debayle J, Gavet Y, Delette G, Laurencin J (2019) Microstructural correlations for specific surface area and triple phase boundary length for composite electrodes of solid oxide cells. J Power Sour 412:736–748

    Article  Google Scholar 

  • Moussaoui H, Debayle J, Gavet Y, Cloetens P, Laurencin J (2020) Particle-based model for functional and diffusion layers of solid oxide cells electrodes. Powder Technol 367:67–81

    Article  Google Scholar 

  • Moussaoui H, Hammerschmid G, Van herle J, Subotić V (2022) Fast online diagnosis for solid oxide fuel cells: optimisation of total harmonic distortion tool for real-system application and reactants starvation identification. J Power Sour 556:232352

    Google Scholar 

  • Preininger M, Stoeckl B, Subotić V, Hochenauer C (2020) Characterization and performance study of commercially available solid oxide cell stacks for an autonomous system. Energy Convers Managem 203:112215

    Article  Google Scholar 

  • Reddy MJ, Svensson JE, Froitzheim J (2021) Evaluating candidate materials for balance of plant components in SOFC: oxidation and Cr evaporation properties. Corros Sci 190:109671

    Article  Google Scholar 

  • Sampathkumar SN et al (2022) Degradation study of a reversible solid oxide cell (rSOC) short stack using distribution of relaxation times (DRT) analysis. Int J Hydrogen Energy 47(18):10175–10193

    Article  Google Scholar 

  • Samsatli S, Samsatli NJ (2019) The role of renewable hydrogen and inter-seasonal storage in decarbonising heat—comprehensive optimisation of future renewable energy value chains. Appl Energy 233–234:854–893

    Article  Google Scholar 

  • Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40(12):4285–4294

    Article  Google Scholar 

  • SOLIDPower (2022) Successfully tested SOLIDpower large stack module for high efficiency hydrogen generation. SOLIDpower (2022). https://www.solidpower.com/en/news/all-news/details/?tx_news_pi1%5Bnews%5D=722&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=9ba4e28689e8522d308d5c7e2828bc7a. Accessed 25 Jul 2022

  • Subotić V et al (2016) In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells Part I: methodology, qualification and detection of carbon deposition. Electrochim Acta 207:224–236

    Article  Google Scholar 

  • Subotić V et al (2020a) Performance assessment of industrial-sized solid oxide cells operated in a reversible mode: detailed numerical and experimental study. Int J Hydrogen Energy 45(53):29166–29185

    Article  Google Scholar 

  • Subotić V et al (2020b) On the origin of degradation in fuel cells and its fast identification by applying unconventional online-monitoring tools. Appl Energy 277:115603

    Article  Google Scholar 

  • Subotić V, Harter P, Kusnezoff M, Napporn TW, Schroettner H, Hochenauer C (2021) Identification of carbon deposition and its removal in solid oxide fuel cells by applying a non-conventional diagnostic tool. Sustain Energy Fuels 5(7):2065–2076

    Article  Google Scholar 

  • Subotić V, Hochenauer C (2022) Analysis of solid oxide fuel and electrolysis cells operated in a real-system environment: state-of-the-health diagnostic, failure modes, degradation mitigation and performance regeneration. Progress in Energy Combustion Sci 93:101011

    Article  Google Scholar 

  • Subotić V, Königshofer B, Höber M, Hochenauer C, Koroschetz M, Hochfellner M, Brabandt J, Baumgartner J (2022) Comprehensive electrochemical analysis of a 150 kW reversible SOC system installed at a power plant Mellach in Austria. In: EFCF conference

    Google Scholar 

  • Sunfire (2022) Sunfire-Hylink SOEC core advantages

    Google Scholar 

  • Thema M, Bauer F, Sterner M (2019) Power-to-gas: electrolysis and methanation status review. Renew Sustain Energy Rev 112:775–787

    Article  Google Scholar 

  • Topsoe (2022) SOEC high-temperature electrolysis|Equipment|Products|Topsoe (2022). https://www.topsoe.com/our-resources/knowledge/our-products/equipment/soec. Accessed 26 Jul 2022

  • Verbund (2022)Grüner Wasserstoff von VERBUND für die Energiewende (2022). https://www.verbund.com/de-at/geschaeftskunden/industrie/gruener-wasserstoff. Accessed 12 Jul 2022

  • VoltaChem (2022) Towards industrial-scale solid oxide electrolyzers: TNO achieves increase in cell size by up to 5 times. VoltaChem (2022). https://www.voltachem.com/news/towards-industrial-scale-solid-oxide-electrolyzers-tno-achieves-increase-in-cell-size-by-up-to-5-times. Accessed 24 Aug 2022

  • Wang L et al (2019a) Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation. Appl Energy 250:1432–1445

    Article  Google Scholar 

  • Wang L et al (2019b) Power-to-fuels via solid-oxide electrolyzer: operating window and techno-economics. Renew Sustain Energy Rev 110:174–187

    Article  Google Scholar 

  • Wen D, Aziz M (2022) Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario. Appl Energy 319:119272

    Google Scholar 

  • Yang S-I, Choi D-Y, Jang S-C, Kim S-H, Choi D-K (2008) Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 14(4–5):583–590

    Article  Google Scholar 

  • Zhang X, O’Brien JE, O’Brien RC, Hartvigsen JJ, Tao G, Housley GK (2013) Improved durability of SOEC stacks for high temperature electrolysis. Int J Hydrogen Energy 38(1):20–28

    Article  Google Scholar 

  • Zhang H, Wang L, Pérez-Fortes M, Van herle J, Maréchal F, Desideri U (2020) Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer. Appl Energy 258:114071

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Moussaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moussaoui, H., Subotić, V., Van herle, J., Wang, L., Wei, X., Yu, H. (2023). Stack/System Development for High-Temperature Electrolysis. In: Laguna-Bercero, M.A. (eds) High Temperature Electrolysis. Lecture Notes in Energy, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-22508-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22508-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22507-9

  • Online ISBN: 978-3-031-22508-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics