Skip to main content

Wave Energy Converter Design: Seawater Integrity and Durability of Epoxy Resin-Filled Corrosive Microorganism Surface-Modified Waste Copper Dust

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

The need for commercially viable, environmentally friendly alternatives is increasing exponentially in response to the global demand for alternative energy sources. As a result, using epoxy components for applications requiring Wave Energy Converter (WEC) offers the following advantages: lower installation costs, lower maintenance costs, higher power generation efficiency, more equipment longevity, fewer stress points, and easier labor operations. However, in situations with seawater, epoxy components usually lose their integrity and durability. It is anticipated that adding fillers like metal particles (copper and/or aluminum) to epoxy may increase the structural elements’ mechanical integrity and durability in situations with seawater. Due to the high cost of metal powders as fillers, there are limitations. Considering the utilization of waste metal dust like waste copper dust (WCD) as fillers is therefore praiseworthy. However, in order to get the desired performance, the surface of the filler particles must be altered because epoxy resins and fillers are not always compatible. WCD cannot be used as epoxy fillers because, although being quick and simple, the physical and chemical techniques of surface preparation greatly increase the cost of filler. Therefore, corrosive microorganisms are recommended as an affordable and alternative surface modification. Thus, the planned research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Karana, P. Hekkert, P. Kandachar, Material considerations in product design: A survey on crucial material aspects used by product designers. Mater. Des. 29(6), 1081–1089 (2008)

    Article  Google Scholar 

  2. M. Sipper, Fifty years of research on self-replication: An overview. Artif. Life 4(3), 237–257 (1998)

    Article  CAS  Google Scholar 

  3. K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383(1-2), 189–195 (2008)

    Article  CAS  Google Scholar 

  4. M.L. Patten, M. Newhart, Understanding Research Methods: An Overview of the Essentials (Routledge, New York, 2017)

    Book  Google Scholar 

  5. A. Rudawska, The effect of the salt water aging on the mechanical properties of epoxy adhesives compounds. Polymers 12(4), 843 (2020)

    Article  CAS  Google Scholar 

  6. Y. Sliozberg, J. Andzelm, C.B. Hatter, B. Anasori, Y. Gogotsi, A. Hall, Interface binding and mechanical properties of MXene-epoxy nanocomposites. Compos. Sci. Technol. 192, 108124 (2020)

    Article  CAS  Google Scholar 

  7. L. Cheng, J. Feng, Flexible and fire-resistant all-inorganic composite film with high in-plane thermal conductivity. Chem. Eng. J. 398, 125633 (2020)

    Article  CAS  Google Scholar 

  8. F.A. Gonçalves, M. Santos, T. Cernadas, P. Alves, P. Ferreira, Influence of fillers on epoxy resins properties: A review. J. Mater. Sci. 57, 15183–15212 (2022)

    Google Scholar 

  9. J.H. Mallinson, Corrosion-Resistant Plastic Composites in Chemical Plant Design (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  10. J. Powell, S. Green, The challenges of bonding composite materials and some innovative solutions. Reinf. Plast. 65(1), 36–39 (2021)

    Article  Google Scholar 

  11. R. Léger, A. Roy, J.C. Grandidier, A study of the impact of humid aging on the strength of industrial adhesive joints. Int. J. Adhes. Adhes. 44, 66–77 (2013)

    Article  Google Scholar 

  12. G.U.I.L.H.E.R.M.E. Viana, M.A.R.C.E.L.O. Costa, M.D. Banea, L.F. da Silva, Water diffusion in double cantilever beam adhesive joints. Lat. Am. J. Solids Struct. 14(2), 188–201 (2017)

    Article  Google Scholar 

  13. B. De Neve, M.E.R. Shanahan, Physical and chemical effects in an epoxy resin exposed to water vapour. J. Adhes. 49(3-4), 165–176 (1995)

    Article  Google Scholar 

  14. M. Lai, J. Botsis, J. Cugnoni, D. Coric, An experimental–numerical study of moisture absorption in an epoxy. Compos. Part A Appl. Sci. Manuf. 43(7), 1053–1060 (2012)

    Article  CAS  Google Scholar 

  15. D.R. Lefebvre, K.M. Takahashi, A.J. Muller, V.R. Raju, Degradation of epoxy coatings in humid environments: The critical relative humidity for adhesion loss. J. Adhes. Sci. Technol. 5(3), 201–227 (1991)

    Article  CAS  Google Scholar 

  16. R.A. Pethrick, Design and ageing of adhesives for structural adhesive bonding–A review. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 229(5), 349–379 (2015)

    CAS  Google Scholar 

  17. A. Rudawska, V. Brunella, The effect of ageing in water solution containing iron sulfate on the mechanical properties of epoxy adhesives. Polymers 12(1), 218 (2020)

    Article  CAS  Google Scholar 

  18. A. Hassan, R. Khan, N. Khan, M. Aamir, D.Y. Pimenov, K. Giasin, Effect of seawater ageing on fracture toughness of stitched glass fiber/epoxy laminates for marine applications. J. Mar. Sci. Eng. 9(2), 196 (2021)

    Article  Google Scholar 

  19. C. Rubio-González, M. Hernández-Santos, E. José-Trujillo, J.A. Rodríguez-González, Effect of seawater aging on impact behavior of glass fiber/epoxy laminates with drilled holes. J. Compos. Mater. 56(10), 1481–1493 (2022)

    Article  Google Scholar 

  20. H. Ulus, H.B. Kaybal, V. Eskizeybek, A. Avcı, Significantly improved shear, dynamic-mechanical, and mode II fracture performance of seawater aged basalt/epoxy composites: The impact of halloysite nanotube reinforcement. Eng. Sci. Technol. Int. J. 24(4), 1005–1014 (2021)

    Google Scholar 

  21. R.J. Hussey, J. Wilson, Structural Adhesives: Directory and Databook (Springer Science & Business Media, London, 1996)

    Book  Google Scholar 

  22. J. Bishopp, Aerospace: A pioneer in structural adhesive bonding, in Handbook of Adhesives and Sealants, vol. 1, (Elsevier Science Ltd., Amsterdam, 2005), pp. 215–347

    Google Scholar 

  23. J.G. Broughton, A.R. Hutchinson, Adhesive systems for structural connections in timber. Int. J. Adhes. Adhes. 21(3), 177–186 (2001)

    Article  CAS  Google Scholar 

  24. P. Kumar, A. Patnaik, S. Chaudhary, A review on application of structural adhesives in concrete and steel–concrete composite and factors influencing the performance of composite connections. Int. J. Adhes. Adhes. 77, 1–14 (2017)

    Article  Google Scholar 

  25. C.R. Frihart, C.G. Hunt, Adhesives with wood materials: Bond formation and performance, in Wood Handbook: Wood as an Engineering Material: Chapter 10. Centennial Ed. General Technical Report FPL; GTR-190, (US Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, 2010), pp. 10.1–10.24, 190

    Google Scholar 

  26. R. Pelc, R.M. Fujita, Renewable energy from the ocean. Mar. Policy 26(6), 471–479 (2002)

    Article  Google Scholar 

  27. B. Drew, A.R. Plummer, M.N. Sahinkaya, A review of wave energy converter technology. Proc. Inst. Mech. Eng. A: J. Power Energy 223(8), 887–902 (2009)

    Article  Google Scholar 

  28. P.A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016)

    Article  Google Scholar 

  29. A. Babarit, J. Hals, M.J. Muliawan, A. Kurniawan, T. Moan, J. Krokstad, Numerical benchmarking study of a selection of wave energy converters. Renew. Energy 41, 44–63 (2012)

    Article  Google Scholar 

  30. O. Langhamer, K. Haikonen, J. Sundberg, Wave power—Sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renew. Sustain. Energy Rev. 14(4), 1329–1335 (2010)

    Article  Google Scholar 

  31. S. Doyle, G.A. Aggidis, Development of multi-oscillating water columns as wave energy converters. Renew. Sustain. Energy Rev. 107, 75–86 (2019)

    Article  Google Scholar 

  32. J. Frick, Implementation Plan for the Stellenbosch Wave Energy Converter on the South-West Coast of South Africa (Master’s thesis, University of Cape Town, 2014)

    Google Scholar 

  33. S. Manju, N. Sagar, Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renew. Sustain. Energy Rev. 73, 594–609 (2017)

    Article  Google Scholar 

  34. M. Melikoglu, Current status and future of ocean energy sources: A global review. Ocean Eng. 148, 563–573 (2018)

    Article  Google Scholar 

  35. C. Rautenbach, T. Daniels, M. de Vos, M.A. Barnes, A coupled wave, tide and storm surge operational forecasting system for South Africa: Validation and physical description. Nat. Hazards 103, 1407–1439 (2020)

    Article  Google Scholar 

  36. E. Belletti, M. McBride, Against the tide: Potential for marine renewable energy in Eastern and Southern Africa. Consilience: The Journal of Sustainable Development. 23, 1–14, (2021)

    Google Scholar 

  37. J.R. Joubert, Design and Development of a Novel Wave Energy Converter (Stellenbosch University, Faculty of Engineering, Doctor of Engineering Thesis, 2013)

    Google Scholar 

  38. D. Banks, J. Schäffler, The Potential Contribution of Renewable Energy in South Africa (Sustainable Energy & Climate Change Project (SECCP), Johannesburg, 2005)

    Google Scholar 

  39. O.R. Energy, White Paper on Renewable Energy. Department of minerals and energy, Republic of south Africa (2003)

    Google Scholar 

  40. C.J.S. Fourie, D. Johnson, The Wave Power Potential of South Africa. Power-Gen Africa, Johannesburg, South Africa, (18–20 July 2007)

    Google Scholar 

  41. R. Ahamed, K. McKee, I. Howard, Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 204, 107248 (2020)

    Article  Google Scholar 

  42. M. Penalba, G. Giorgi, J.V. Ringwood, Mathematical modelling of wave energy converters: A review of nonlinear approaches. Renew. Sustain. Energy Rev. 78, 1188–1207 (2017)

    Article  Google Scholar 

  43. J. Falnes, A review of wave-energy extraction. Mar. Struct. 20(4), 185–201 (2007)

    Article  Google Scholar 

  44. J. Hals, J. Falnes, T. Moan, A comparison of selected strategies for adaptive control of wave energy converters. J. Offshore Mech. Arct. Eng. 133(3), 031101 (2011)

    Article  Google Scholar 

  45. C. Pérez-Collazo, D. Greaves, G. Iglesias, A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 42, 141–153 (2015)

    Article  Google Scholar 

  46. S. Astariz, J. Abanades, C. Perez-Collazo, G. Iglesias, Improving wind farm accessibility for operation & maintenance through a co-located wave farm: Influence of layout and wave climate. Energy Convers. Manage. 95, 229–241 (2015)

    Article  Google Scholar 

  47. R. Tiron, F. Mallon, F. Dias, E.G. Reynaud, The challenging life of wave energy devices at sea: A few points to consider. Renew. Sustain. Energy Rev. 43, 1263–1272 (2015)

    Article  Google Scholar 

  48. J.A. Hudson, D.C. Phillips, N.J.M. Wilkins, Materials aspects of wave energy converters. J. Mater. Sci. 15(6), 1337–1363 (1980)

    Article  CAS  Google Scholar 

  49. R.P.M. Parker, G.P. Harrison, J.P. Chick, Energy and carbon audit of an offshore wave energy converter. Proc. Inst. Mech. Eng. A: J. Power Energy 221(8), 1119–1130 (2007)

    Article  CAS  Google Scholar 

  50. T.W. Thorpe, M.J. Picken, Wave energy devices and the marine environment. IEE Proc. A Sci. Measur. Technol. 140(1), 63–70 (1993)

    Article  CAS  Google Scholar 

  51. Z. Wang, X.L. Zhao, G. Xian, G. Wu, R.S. Raman, S. Al-Saadi, Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre-reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Construct. Build Mater. 156, 985–1004 (2017)

    Article  CAS  Google Scholar 

  52. P. Alam, D. Mamalis, C. Robert, C. Floreani, C.M.Ó. Brádaigh, The fatigue of carbon fibre-reinforced plastics-A review. Compos. Part B Eng. 166, 555–579 (2019)

    Article  CAS  Google Scholar 

  53. M. Calvário, L.S. Sutherland, C. Guedes Soares, A review of the applications composite materials in wave and tidal energy devices, in Natural and Artificial Fiber-Reinforced Composites as Renewable Sources. Developments in Maritime Transportation and Harvesting of Sea Resources: Proceedings of the 17th International Congress of the International Maritime Association of the Mediterranean (IMAM 2017) (2017)

    Google Scholar 

  54. W. Zhishen, W. Xin, W. Gang, Advancement of structural safety and sustainability with basalt fiber-reinforced polymers, in CICE2012, vol 13 (Rome, 2012), pp. 15–29

    Google Scholar 

  55. M.N. Gururaja, A.H. Rao, A review on recent applications and future prospectus of hybrid composites. Int. J. Soft Comput. Eng. 1(6), 352–355 (2012)

    Google Scholar 

  56. V. Mara, R. Haghani, P. Harryson, Bridge decks of fibre-reinforced polymer (FRP): A sustainable solution. Construct. Build Mater. 50, 190–199 (2014)

    Article  Google Scholar 

  57. L.C. Hollaway, The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Construct. Build Mater. 17(6-7), 365–378 (2003)

    Article  Google Scholar 

  58. P. Fernandes, G. Viana, R.J.C. Carbas, M. Costa, L.F.M. da Silva, M.D. Banea, The influence of water on the fracture envelope of an adhesive joint. Theor. Appl. Fract. Mech. 89, 1–15 (2017)

    Article  Google Scholar 

  59. M. Bordes, P. Davies, J.Y. Cognard, L. Sohier, V. Sauvant-Moynot, J. Galy, Prediction of long-term strength of adhesively bonded steel/epoxy joints in sea water. Int. J. Adhes. Adhes. 29(6), 595–608 (2009)

    Article  CAS  Google Scholar 

  60. M. Heshmati, R. Haghani, M. Al-Emrani, Effects of moisture on the long-term performance of adhesively bonded FRP/steel joints used in bridges. Compos. Part B Eng. 92, 447–462 (2016)

    Article  CAS  Google Scholar 

  61. M. Heshmati, R. Haghani, M. Al-Emrani, Durability of CFRP/steel joints under cyclic wet-dry and freeze-thaw conditions. Compos. Part B Eng. 126, 211–226 (2017)

    Article  CAS  Google Scholar 

  62. S. Owuamanam, D. Cree, Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: A review. J. Compos. Sci. 4(2), 70 (2020)

    Article  CAS  Google Scholar 

  63. D. Okanigbe, P. Olawale, A. Popoola, A. Abraham, A. Michael, K. Andrei, Centrifugal separation experimentation and optimum predictive model development for copper recovery from waste copper smelter dust. Cogent Eng. 5(1), 1551175 (2018)

    Article  Google Scholar 

  64. B. Barsotti, M. Gaiotti, C.M. Rizzo, Recent industrial developments of marine composites limit states and design approaches on strength. J. Mar. Sci. Appl. 19(4), 553–566 (2020)

    Article  Google Scholar 

  65. M.L. Martínez, G. Vázquez, O. Pérez-Maqueo, R. Silva, P. Moreno-Casasola, G. Mendoza-González, J. López-Portillo, I. MacGregor-Fors, G. Heckel, J.R. Hernández-Santana, J.G. García-Franco, A systemic view of potential environmental impacts of ocean energy production. Renew. Sustain. Energy Rev. 149, 111332 (2021)

    Article  Google Scholar 

  66. A. Adesanya, S. Misra, R. Maskeliunas, R. Damasevicius, Prospects of ocean-based renewable energy for West Africa’s sustainable energy future. Smart Sustain. Built Environ. 10(1), 37–50 (2020)

    Google Scholar 

  67. C.S. Barrera, K. Cornish, Fly ash as a potential filler for the rubber industry. J. Handb. Fly Ash, 1, 763–792 (2022)

    Google Scholar 

  68. S.R. Hartshorn (ed.), Structural Adhesives: Chemistry and Technology (Springer Science & Business Media, New York, 2012)

    Google Scholar 

  69. F.A. Keimel, Historical development of adhesives and adhesive bonding. In Handbook of Adhesive Technology, Revised and Expanded; Marcel Dekker, Inc.: New York, NY, USA, 1–12 (2003)

    Google Scholar 

  70. T.M. Carole, J. Pellegrino, M.D. Paster, Opportunities in the industrial biobased products industry, in Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, (Humana Press, Totowa, 2004), pp. 871–885

    Chapter  Google Scholar 

  71. K. Hirano, M. Asami, Phenolic resins—100 years of progress and their future. React. Funct. Polym. 73(2), 256–269 (2013)

    Article  CAS  Google Scholar 

  72. R. Vendamme, N. Schüwer, W. Eevers, Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. J. Appl. Polym. Sci. 131(17) (2014)

    Google Scholar 

  73. H. Wang, X. Gong, J. Gong, Current and future challenges of bio-based adhesives for wood composite industries, in Eco-Friendly Adhesives for Wood and Natural Fiber Composites, (Springer, Singapore, 2021), pp. 147–164

    Chapter  Google Scholar 

  74. D.M. Gleich, Stress Analysis of Structural Bonded Joints. TU Delft, Delft University of Technology, (2002)

    Google Scholar 

  75. A.A. Baker, L.F. Rose, R. Jones (eds.), Advances in the Bonded Composite Repair of Metallic Aircraft Structure (Elsevier, Burlington, 2003)

    Google Scholar 

  76. S.M.R. Khalili, M.H. Jafarkarimi, M.A. Abdollahi, Creep analysis of fibre- reinforced adhesives in single lap joints—Experimental study. Int. J. Adhes. Adhes. 29(6), 656–661 (2009)

    Article  CAS  Google Scholar 

  77. A. Skorulska, P. Piszko, Z. Rybak, M. Szymonowicz, M. Dobrzyński, Review on polymer, ceramic and composite materials for cad/cam indirect restorations in dentistry—Application, mechanical characteristics and comparison. Materials 14(7), 1592 (2021)

    Article  CAS  Google Scholar 

  78. J. Zhu, Z. Zhang, S. Zhao, A.S. Westover, I. Belharouak, P.F. Cao, Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: Design, performance, and challenges. Adv. Energy Mater. 11(14), 2003836 (2021)

    Article  CAS  Google Scholar 

  79. S.V. Levchik, E.D. Weil, Flame retardancy of thermoplastic polyesters—A review of the recent literature. Polym. Int. 54(1), 11–35 (2005)

    Article  CAS  Google Scholar 

  80. C. T’Joen, Y. Park, Q. Wang, A. Sommers, X. Han, A. Jacobi, A review on polymer heat exchangers for HVAC&R applications. Int. J. Refrig. 32(5), 763–779 (2009)

    Article  Google Scholar 

  81. I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: An outlook. Science 362(6414), 547–553 (2018)

    Article  CAS  Google Scholar 

  82. S. De Barros, P.P. Kenedi, S.M. Ferreira, S. Budhe, A.J. Bernardino, L.F.G. Souza, Influence of mechanical surface treatment on fatigue life of bonded joints. J. Adhes. 93(8), 599–612 (2017)

    Article  CAS  Google Scholar 

  83. Y. Xie, B. Yang, L. Lu, Z. Wan, X. Liu, Shear strength of bonded joints of carbon fiber-reinforced plastic (CFRP) laminates enhanced by a two-step laser surface treatment. Compos. Struct. 232, 111559 (2020)

    Article  Google Scholar 

  84. M. Afendi, M.A. Majid, R. Daud, A.A. Rahman, T. Teramoto, Strength prediction and reliability of brittle epoxy adhesively bonded dissimilar joint. Int. J. Adhes. Adhes. 45, 21–31 (2013)

    Article  CAS  Google Scholar 

  85. M.V. Cakir, D. Kinay, MWCNT, nano-silica, and nano-clay additives effects on adhesion performance of dissimilar materials bonded joints. Polym. Compos. 42(11), 5880–5892 (2021)

    Article  CAS  Google Scholar 

  86. G. Marami, S.A. Nazari, S.A. Faghidian, F. Vakili-Tahami, S. Etemadi, Improving the mechanical behavior of the adhesively bonded joints using RGO additive. Int. J. Adhes. Adhes. 70, 277–286 (2016)

    Article  CAS  Google Scholar 

  87. Y. Korkmaz, K. Gültekin, Improvement of structural, thermal and mechanical properties of epoxy composites and bonded joints exposed to water environment by incorporating boron nanoparticles. Int. J. Adhes. Adhes. 116, 103141 (2022)

    Article  CAS  Google Scholar 

  88. İ. Saraç, H. Adin, Ş. Temiz, Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles. Compos. Part B Eng. 155, 92–103 (2018)

    Article  Google Scholar 

  89. R.B. Ladani, S. Wu, A.J. Kinloch, K. Ghorbani, A.P. Mouritz, C.H. Wang, Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibres. Compos. Sci. Technol. 149, 116–126 (2017)

    Article  CAS  Google Scholar 

  90. S.Y. Park, W.J. Choi, B.C. Yoon, Analysis of effects of process factors on corrosion resistance of adhesive bonded joints for aluminum alloys. J. Mater. Process. Technol. 276, 116412 (2020)

    Article  CAS  Google Scholar 

  91. H. Wan, J. Lin, J. Min, Effect of laser ablation treatment on corrosion resistance of adhesive-bonded Al alloy joints. Surf. Coat. Technol. 345, 13–21 (2018)

    Article  CAS  Google Scholar 

  92. C. Sato, R.J. Carbas, E.A. Marques, A. Akhavan-Safar, L.F. da Silva, Effect of disassembly on environmental and recycling issues in bonded joints, in Adhesive Bonding, (Woodhead Publishing, Oxford, 2021), pp. 407–436

    Chapter  Google Scholar 

  93. P. Chalkley, A. Rider, Toughening boron/epoxy-bonded joints using the resin film infusion technique. Compos. Part A Appl. Sci. Manuf. 34(4), 341–348 (2003)

    Article  Google Scholar 

  94. N. Brack, A.N. Rider, The influence of mechanical and chemical treatments on the environmental resistance of epoxy adhesive bonds to titanium. Int. J. Adhes. Adhes. 48, 20–27 (2014)

    Article  CAS  Google Scholar 

  95. C.E. Yue, S. Dong, L. Weng, Y. Wang, L. Zhao, Environmental resistance and fatigue behaviors of epoxy/nano-boron nitride thermally conductive structural film adhesive toughened by polyphenoxy. Polymers 13(19), 3253 (2021)

    Article  CAS  Google Scholar 

  96. R. Yemm, D. Pizer, C. Retzler, R. Henderson, Pelamis: Experience from concept to connection. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1959), 365–380 (2012)

    Article  Google Scholar 

  97. S. Helland, R. Aarstein, M. Maage, In-field performance of North Sea offshore platforms with regard to chloride resistance. Struct. Concr. 11(1), 15–24 (2010)

    Article  Google Scholar 

  98. P.K. Mehta, Greening of the concrete industry for sustainable development. Concr. Int. 24(7), 23–28 (2002)

    Google Scholar 

  99. E. Dutkiewicz, Fizykochemia powierzchni (Wydawnictwa Naukowo-Techniczne, Warszawa, 1998)

    Google Scholar 

  100. A. Pizzi, K.L. Mittal (eds.), Handbook of Adhesive Technology (CRC Press, Boca Raton, 2017)

    Google Scholar 

  101. K. Kelar, D. Ciesielska, Fizykochemia polimerĂłw: wybrane zagadnienia (Wydawnictwo Politechniki PoznaĹ, skiej, 1997)

    Google Scholar 

  102. A. Baldan, Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 38, 95–116 (2012)

    Article  CAS  Google Scholar 

  103. K.L. DeVries, D.O. Adams, Mechanical testing of adhesive joints, in Adhesion Science and Engineering, (Elsevier Pub., The Netherlands, 2002), pp. 193–234

    Google Scholar 

  104. A. Szewczak, Influence of epoxy glue modification on the adhesion of CFRP tapes to concrete surface. Materials 14(21), 6339 (2021)

    Article  CAS  Google Scholar 

  105. M. Żenkiewicz, Adhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych (Wydawnictwa Naukowo-Techniczne, Warszawa, 2000)

    Google Scholar 

  106. J.W. McBain, D.G. Hopkins, On adhesives and adhesive action. J. Phys. Chem. 29(2), 188–204 (2002)

    Article  Google Scholar 

  107. A. Clark, The Theory of Adsorption and Catalysis (Academic, New York, 2018)

    Google Scholar 

  108. L.H. Lee (ed.), Fundamentals of Adhesion (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  109. A.V. Pocius, D. Dillard, Adhesion Science and Engineering: Surfaces, Chemistry and Applications (Elsevier, Amsterdam, 2002)

    Google Scholar 

  110. D. Ruffatto III, A. Parness, M. Spenko, Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface 11(93), 20131089 (2014)

    Article  Google Scholar 

  111. S.S. Voyutskii, V.L. Vakula, The role of diffusion phenomena in polymer-to-polymer adhesion. J. Appl. Polym. Sci. 7(2), 475–491 (1963)

    Article  CAS  Google Scholar 

  112. V.Y. Popov, A.S. Yanyushkin, Adhesion-diffusion interaction of contact surfaces with the treatment diamond grinding wheels. East. Eur. Sci. J. 2, 301–310 (2014)

    Google Scholar 

  113. J.J. Bikerman, The Science of Adhesive Joints (Acad. Press, New York, 1968)

    Google Scholar 

  114. F.M. Fowkes, Role of acid-base interfacial bonding in adhesion. J. Adhes. Sci. Technol. 1(1), 7–27 (1987)

    Article  CAS  Google Scholar 

  115. I. Astm, ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM Int., West Conshohocken, PA 3(4), 5 (2015)

    Google Scholar 

  116. L.P. Devendra, R.K. Sukumaran, Comparative evaluation of lignin derived from different sugarcane bagasse pretreatments in the synthesis of wood adhesive. BioEnergy Res., 15 1–12 (2022)

    Google Scholar 

  117. S. Zhou, F. Wang, J. Chen, D. Alhashmialameer, S. Wang, M.H.H. Mahmoud, G.A. Mersal, J. Huang, Q. Zhang, G. Zhao, Y. Liu, Enhanced mechanical, thermal, and tribological performance of 2D-laminated molybdenum disulfide/RGO nanohybrid filling phenolic resin composites. Adv. Compos. Hybrid Mater. 5(2), 1206–1220 (2022)

    Article  CAS  Google Scholar 

  118. W. Zhou, H. Zhao, Z. Li, X. Huang, Autopolymerizing acrylic repair resin containing low concentration of dimethylaminohexadecyl methacrylate to combat saliva-derived bacteria. J. Mater. Sci.: Mater. Med. 33(6), 1–13 (2022)

    Google Scholar 

  119. N. Sukprasert, C. Harnirattisai, P. Senawongse, H. Sano, P. Saikaew, Delayed light activation of resin composite affects the bond strength of adhesives under dynamic simulated pulpal pressure. Clin. Oral Investig., 26(11), 6743–6752 (2022)

    Google Scholar 

  120. E.L.D.A. de Cianoacrilato, Longitudinal evaluation of ethyl cyanoacrylate adhesives on Candida albicans biofilm. Int. J. Odontostomat. 16(1), 68–72 (2022)

    Article  Google Scholar 

  121. P. Sonkusare, P. Agarwal, S.K. Dhakad, R.S. Rana, A review paper: Study of various renewable resources polymer and different types of nanocomposite materials, in Technology Innovation in Mechanical Engineering, (Springer, Singapore, 2022), pp. 63–73

    Chapter  Google Scholar 

  122. M. Bilal, S.A. Qamar, M. Qamar, V. Yadav, M.J. Taherzadeh, S.S. Lam, H. Iqbal, Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy. Biomass Convers. Biorefin. 12, 1–27 (2022)

    Google Scholar 

  123. M.A. Boyle, C.J. Martin, J.D. Neuner, Epoxy resins. ASM Handb 21, 78–89 (2001)

    Google Scholar 

  124. E. Ciecierska, A. Boczkowska, M. Kubis, P. Chabera, T. Wisniewski, Epoxy composites with carbon fillers. Structure and properties. Przem. Chem. 94(11), 2033–2037 (2015)

    CAS  Google Scholar 

  125. K. Wang, L. Chen, J. Wu, M.L. Toh, C. He, A.F. Yee, Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromolecules 38(3), 788–800 (2005)

    Article  CAS  Google Scholar 

  126. S. Ebnesajjad, A.H. Landrock, Adhesives Technology Handbook (William Andrew, Amsterdam, 2014)

    Google Scholar 

  127. G.C. Mays, A.R. Hutchinson, Adhesives in Civil Engineering, vol 32 (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  128. K.K. Chawla, Metal matrix composites, in Composite Materials, (Springer, New York, 2012), pp. 197–248

    Chapter  Google Scholar 

  129. B. Ellis (ed.), Chemistry and Technology of Epoxy Resins, 1st edn. (Blackie Academic & Professional, London, 1993), pp. 212–213

    Google Scholar 

  130. J.H. Koo, Polymer Nanocomposites: Processing, Characterization, and Applications (McGraw-Hill Education, New York, 2019)

    Google Scholar 

  131. A.B. Strong, Plastics: Materials and Processing (Prentice Hall, Upper Saddle River, 2006)

    Google Scholar 

  132. Q. Wang, Z. Yang, Y. Yang, C. Long, H. Li, A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci. Total Environ. 473, 483–489 (2014)

    Article  Google Scholar 

  133. I.N. Yoon, Y. Lee, D. Kang, J. Min, J. Won, M. Kim, Y.S. Kang, S.H. Kim, J.J. Kim, Modification of hydrogenated Bisphenol A epoxy adhesives using nanomaterials. Int. J. Adhes. Adhes. 31(2), 119–125 (2011)

    Article  CAS  Google Scholar 

  134. A. Rudawska, M. Czarnota, Selected aspects of epoxy adhesive compositions curing process. J. Adhes. Sci. Technol. 27(17), 1933–1950 (2013)

    Article  CAS  Google Scholar 

  135. C. Capela, S.E. Oliveira, J.A.M. Ferreira, Fatigue behavior of short carbon fiber-reinforced epoxy composites. Compos. Part B Eng. 164, 191–197 (2019)

    Article  CAS  Google Scholar 

  136. Z. Xu, M. Wu, W. Gao, H. Bai, A transparent, skin-inspired composite film with outstanding tear resistance based on flat silk cocoon. Adv. Mater. 32(34), 2002695 (2020)

    Article  CAS  Google Scholar 

  137. Z.F. Zhu, W.W. Wang, K.A. Harries, Y.Z. Zheng, Uniaxial tensile stress-strain behavior of carbon-fiber grid-reinforced engineered cementitious composites. J. Compos. Constr. 22(6), 04018057 (2018)

    Article  CAS  Google Scholar 

  138. X. Wang, X. Zhao, S. Chen, Z. Wu, Static and fatigue behavior of basalt fiber-reinforced thermoplastic epoxy composites. J. Compos. Mater. 54(18), 2389–2398 (2020)

    Article  CAS  Google Scholar 

  139. H. Gonabadi, A. Oila, A. Yadav, S. Bull, Investigation of the effects of environmental fatigue on the mechanical properties of GFRP composite constituents using nanoindentation. Exp. Mech. 62(4), 585–602 (2022)

    Article  CAS  Google Scholar 

  140. R. Sivaperumal, J. Jancirani, Characterization of amino silane modified ramie fibre, OMMT nanoclay-reinforced epoxy resin composite. Silicon, 14(12), 7193–7202 (2022)

    Google Scholar 

  141. M. da Silva Batista, L.A. Teixeira, A. de Souza Louly, S.O. Silva, S.M. da Luz, Fatigue damage propagation and creep behavior on sisal/epoxy composites. Polímeros: Ciência e Tecnologia 32(1), 0 (2022)

    Google Scholar 

  142. L. Yan, X. Gao, F. Wahid-Pedro, J.T.E. Quinn, Y. Meng, Y. Li, A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium–sulfur batteries. J. Mater. Chem. A 6(29), 14315–14323 (2018)

    Article  CAS  Google Scholar 

  143. N. Tual, N. Carrere, P. Davies, T. Bonnemains, E. Lolive, Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades. Compos. Part A Appl. Sci. Manuf. 78, 380–389 (2015)

    Article  CAS  Google Scholar 

  144. Z. Wang, G. Xian, X.L. Zhao, Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength. Construct. Build Mater. 161, 634–648 (2018)

    Article  CAS  Google Scholar 

  145. J.Y. Wang, H.J. Ploehn, Dynamic mechanical analysis of the effect of water on glass bead–epoxy composites. J. Appl. Polym. Sci. 59(2), 345–357 (1996)

    Article  CAS  Google Scholar 

  146. Z.R. Xu, K.H.G. Ashbee, Photoelastic study of the durability of interfacial bonding of carbon fibre-epoxy resin composites. J. Mater. Sci. 29(2), 394–403 (1994)

    Article  CAS  Google Scholar 

  147. E. Pérez-Pacheco, J.I. Cauich-Cupul, A. Valadez-González, P.J. Herrera-Franco, Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites. J. Mater. Sci. 48(5), 1873–1882 (2013)

    Article  Google Scholar 

  148. A.H.I. Mourad, B.M. Abdel-Magid, T. El-Maaddawy, M.E. Grami, Effect of seawater and warm environment on glass/epoxy and glass/polyurethane composites. Appl. Compos. Mater. 17(5), 557–573 (2010)

    Article  CAS  Google Scholar 

  149. A. Boisseau, P. Davies, F. Thiebaud, Sea water ageing of composites for ocean energy conversion systems: Influence of glass fibre type on static behaviour. Appl. Compos. Mater. 19(3), 459–473 (2012)

    Article  CAS  Google Scholar 

  150. M. Dawson, P. Davies, P. Harper, S. Wilkinson, Effects of conditioning parameters and test environment on composite materials for marine applications, in SAMPE Europe Conference, (2016)

    Google Scholar 

  151. R. Kilik, R. Davies, Mechanical properties of adhesive filled with metal powders. Int. J. Adhes. Adhes. 9(4), 224–228 (1989)

    Article  CAS  Google Scholar 

  152. J. Murphy (ed.), Additives for Plastics Handbook (Elsevier, Oxford, 2001)

    Google Scholar 

  153. N. Tarannum, K.M. Pooja, R. Khan, Preparation and applications of hydrophobic multicomponent based redispersible polymer powder: A review. Construct. Build Mater. 247, 118579 (2020)

    Article  CAS  Google Scholar 

  154. A. Shojaei, S.S. Khasraghi, Self-healing and self-sensing smart polymer composites, in Composite Materials; Low, I.-M., Yu, D., Eds.; Elsevier: Amsterdam, The Netherlands, pp. 307–357 (2021)

    Google Scholar 

  155. K.M. Nambiraj, K. Rajkumar, P. Sabarinathan, A novel approach on reusing silicon wafer kerf particle as potential filler material in polymer composite. Silicon 14(4), 1537–1548 (2022)

    Article  CAS  Google Scholar 

  156. A.A. Ahmad Fauzi, A.F. Osman, A.A. Alrashdi, Z. Mustafa, K.A. Abdul Halim, On the use of dolomite as a mineral filler and co-filler in the field of polymer composites: A review. Polymers 14(14), 2843 (2022)

    Article  CAS  Google Scholar 

  157. U.A. Khashaba, A.A. Aljinaidi, M.A. Hamed, Fatigue and reliability analysis of nano-modified scarf adhesive joints in carbon fiber composites. Compos. Part B Eng. 120, 103–117 (2017)

    Article  CAS  Google Scholar 

  158. M.H. Wichmann, J. Sumfleth, F.H. Gojny, M. Quaresimin, B. Fiedler, K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties–benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73(16), 2346–2359 (2006)

    Article  Google Scholar 

  159. A. Rudawska, D. Stančeková, N. Cubonova, T. Vitenko, M. Müller, P. Valášek, Adhesive properties and adhesive joints strength of graphite/epoxy composites. J. Phys.: Conf. Ser. 842(1), 012073 (2017). IOP Publishing

    Google Scholar 

  160. T. Yokoyama, K. Nakai, Determination of the impact tensile strength of structural adhesive butt joints with a modified split Hopkinson pressure bar. Int. J. Adhes. Adhes. 56, 13–23 (2015)

    Article  CAS  Google Scholar 

  161. A. Girge, V. Goel, G. Gupta, D. Fuloria, P.R. Pati, A. Sharma, V.K. Mishra, Industrial waste filled polymer composites–A review. Mater. Today Proc. 47, 2852–2863 (2021)

    Article  CAS  Google Scholar 

  162. R. Kumar, A review on epoxy and polyester-based polymer concrete and exploration of polyfurfuryl alcohol as polymer concrete. J. Polym. 2016, 7249743 (2016)

    Google Scholar 

  163. F. Pahlevani, V. Sahajwalla, Effect of different waste filler and silane coupling agent on the mechanical properties of powder-resin composite. J. Clean. Prod. 224, 940–956 (2019)

    Article  Google Scholar 

  164. R.R. Galeev, R.K. Nizamov, L.A. Abdrakhmanova, January. Filling of epoxy polymers with chemically precipitated chalk from chemical water treatment sludge, in International Conference Industrial and Civil Construction, (Springer, Cham, 2021), pp. 93–97

    Google Scholar 

  165. I. Miturska, A. Rudawska, M. Müller, P. Valášek, The influence of modification with natural fillers on the mechanical properties of epoxy adhesive compositions after storage time. Materials 13(2), 291 (2020)

    Article  CAS  Google Scholar 

  166. Z. Zhao, A. Grellier, M.E.K. Bouarroudj, F. Michel, D. Bulteel, L. Courard, Substitution of limestone filler by waste brick powder in self-compacting mortars: Properties and durability. J. Build. Eng. 43, 102898 (2021)

    Article  Google Scholar 

  167. P.R. Pati, M.P. Satpathy, Investigation on red brick dust filled epoxy composites using ant lion optimization approach. Polym. Compos. 40(10), 3877–3885 (2019)

    Article  CAS  Google Scholar 

  168. A.S. Mostovoi, E.A. Kurbatova, Controlling the properties of epoxy composites filled with brick dust. Russ. J. Appl. Chem. 90(2), 267–276 (2017)

    Article  CAS  Google Scholar 

  169. A. Szewczak, M. Szeląg, Physico-mechanical and rheological properties of epoxy adhesives modified by microsilica and sonication process. Materials 13(23), 5310 (2020)

    Article  CAS  Google Scholar 

  170. J.M. González-Domínguez, Y. Martínez-Rubí, A.M. Díez-Pascual, A. Ansón-Casaos, M. Gómez-Fatou, B. Simard, M.T. Martínez, Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties. Nanotechnology 23(28), 285702 (2012)

    Article  Google Scholar 

  171. G. Wypych, Plasticizers use and selection for specific polymers. In Handbook of Plasticizers; Wypych, G., Ed.; ChemTec Publishing: Toronto, Canada,; Chapter 11; pp. 273–379 (2004)

    Google Scholar 

  172. J.F. Rabek, Współczesna wiedza o polimerach: wybrane zagadnienia (Wydawnictwo Naukowe PWN, Warszawa, 2008)

    Google Scholar 

  173. W.W. Gerberich, M.J. Cordill, Physics of adhesion. Rep. Prog. Phys. 69(7), 2157 (2006)

    Article  CAS  Google Scholar 

  174. L. Karasek, M. Sumita, Characterization of dispersion state of filler and polymer-filler Interactions in rubber-carbon black composites. J. Mater. Sci. 31(2), 281–289 (1996)

    Article  CAS  Google Scholar 

  175. F.N. Ahmad, M. Jaafar, S. Palaniandy, K.A.M. Azizli, Effect of particle shape of silica mineral on the properties of epoxy composites. Compos. Sci. Technol. 68(2), 346–353 (2008)

    Article  CAS  Google Scholar 

  176. C. Creton, Pressure-sensitive adhesives: An introductory course. MRS Bull. 28(6), 434–439 (2003)

    Article  CAS  Google Scholar 

  177. K. von der Mark, J. Park, S. Bauer, P. Schmuki, Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 339(1), 131–153 (2010)

    Article  Google Scholar 

  178. A. Hejna, M. Przybysz-Romatowska, P. Kosmela, Ł. Zedler, J. Korol, K. Formela, Recent advances in compatibilization strategies of wood-polymer composites by isocyanates. Wood Sci. Technol. 54(5), 1091–1119 (2020)

    Article  CAS  Google Scholar 

  179. S. Yang, J. Tian, X. Bian, Y. Wu, High performance NBR/fly ash composites prepared by an environment-friendly method. Combust. Sci. Technol. 186, 107909 (2020)

    Article  CAS  Google Scholar 

  180. A. Kaleni, S.I. Magagula, M.T. Motloung, M.J. Mochane, T.C. Mokhena, Preparation and characterization of coal fly ash-reinforced polymer composites: An overview. Express Polym. Lett. 16(7), 735–759 (2022)

    Google Scholar 

  181. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Characterization of copper smelter dust for copper recovery. Procedia Manuf. 7, 121–126 (2017)

    Article  Google Scholar 

  182. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Hydrometallurgical processing of copper smelter dust for copper recovery as nano-particles: A review. Energy Technol. 2017, 205–226 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ogochukwu Okanigbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O., Van Der Merwe, S.R. (2023). Wave Energy Converter Design: Seawater Integrity and Durability of Epoxy Resin-Filled Corrosive Microorganism Surface-Modified Waste Copper Dust. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_9

Download citation

Publish with us

Policies and ethics