Skip to main content

Extraction of Copper Oxide (II): Copper Oxide Nanoparticles

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

The development of a processing technique that could eliminate impurities from copper smelter dust (WCD) while maintaining a desirable level of revenue metals in the final concentrate is seen as a useful strategy. Not to mention the profit that can be realized if done economically to support the handling of WCD that has been accumulated. The recovery of contained copper values as CuO nanoparticles (CuO-NPs) precipitates, instead of copper cathode slabs, is more appealing. The study’s goal was to create CuO-NPs from the leach solution of low-grade WCD from South Africa. The goal was accomplished by first preparing a copper precursor. This was achieved by adding 0.5 M solution of Na2CO3 dropwise to purified CuSO4 Solution. The copper precursor preparation process was optimized at various test temperatures (25, 55, and 85 °C) and stirring rates (340, 740, and 1480 rpm). The copper precursor was then thermally decomposed at various temperatures (650, 750, and 850 °C) and times (1, 2, 3 h). The obtained results demonstrated that angular to spherical CuO-NPs with a mean diameter of 35 ± 5 nm were successfully synthesized using a thermal decomposition approach at optimal conditions (copper precursor: 85 °C/340 rpm and CuO-NPs: 750 °C/2 h). This process does not need organic solvents, pricey raw ingredients, or difficult machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Characterization of copper smelter dust for copper recovery. Procedia Manuf. 7, 121–126 (2017)

    Article  Google Scholar 

  2. X. Zhang, D. Zhang, X. Ni, J. Song, H. Zheng, Synthesis and electrochemical properties of different sizes of the CuO particles. J. Nanopart. Res. 10(5), 839–844 (2008)

    Article  CAS  Google Scholar 

  3. M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D. Appl. Phys. 42(1), 015413 (2008)

    Article  Google Scholar 

  4. T. Kida, T. Oka, M. Nagano, Y. Ishiwata, X.G. Zheng, Synthesis and application of stable copper oxide nanoparticle suspensions for nanoparticulate film fabrication. J. Am. Ceram. Soc. 90(1), 107–110 (2007)

    Article  CAS  Google Scholar 

  5. N. Topnani, S. Kushwaha, T. Athar, Wet synthesis of copper oxide nanopowder. Int. J. Green Nanotechnol. Mater. Sci. Eng. 1(2), M67–M73 (2010)

    Article  Google Scholar 

  6. M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn, H.S. Shin, Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl. Surf. Sci. 254(22), 7477–7481 (2008)

    Article  CAS  Google Scholar 

  7. J. Wang, S. He, Z. Li, X. Jing, M. Zhang, Synthesis of claw-like CuO and its catalytic activity in the thermal decomposition of ammonium perchlorate. Mater. Sci. Pol. 27(2), 501–507 (2009)

    CAS  Google Scholar 

  8. X. Zhang, D. Zhang, X. Ni, H. Zheng, Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate. Solid State Electron. 52(2), 245–248 (2008)

    Article  CAS  Google Scholar 

  9. C. Li, Y. Yin, H. Hou, N. Fan, F. Yuan, Y. Shi, Q. Meng, Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Commun. 150(13–14), 585–589 (2010)

    Article  CAS  Google Scholar 

  10. B.J. Hansen, N. Kouklin, G. Lu, I.K. Lin, J. Chen, X. Zhang, Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 114(6), 2440–2447 (2010)

    Article  CAS  Google Scholar 

  11. C.T. Hsieh, J.M. Chen, H.H. Lin, H.C. Shih, Field emission from various CuO nanostructures. Appl. Phys. Lett. 83(16), 3383–3385 (2003)

    Article  CAS  Google Scholar 

  12. C.C. Li, M.H. Chang, Colloidal stability of CuO nanoparticles in alkanes via oleate modifications. Mater. Lett. 58(30), 3903–3907 (2004)

    Article  CAS  Google Scholar 

  13. M.H. Chang, H.S. Liu, C.Y. Tai, Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Technol. 207(1–3), 378–386 (2011)

    Article  CAS  Google Scholar 

  14. S. Anandan, X. Wen, S. Yang, Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93(1), 35–40 (2005)

    Article  CAS  Google Scholar 

  15. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108(18), 5547–5551 (2004)

    Article  CAS  Google Scholar 

  16. C.L. Carnes, K.J. Klabunde, The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J. Mol. Catal. A Chem. 194(1–2), 227–236 (2003)

    Article  CAS  Google Scholar 

  17. Y. Kobayashi, T. Maeda, K. Watanabe, K. Ihara, Y. Yasuda, T. Morita, Preparation of CuO nanoparticles by metal salt-base reaction in aqueous solution and their metallic bonding property. J. Nanopart. Res. 13(10), 5365–5372 (2011)

    Article  CAS  Google Scholar 

  18. L. Sun, Z. Zhang, Z. Wang, Z. Wu, H. Dang, Synthesis and characterization of CuO nanoparticles from liquid ammonia. Mater. Res. Bull. 40(6), 1024–1027 (2005)

    Article  CAS  Google Scholar 

  19. P.J. Cai, M. Shi, Large scale synthesis of shuttle like CuO nanocrystals by microwave irradiation, in Advanced Materials Research, vol. 92, (Trans Tech Publications Ltd., 2010), pp. 117–123

    Google Scholar 

  20. D. Han, H. Yang, C. Zhu, F. Wang, Controlled synthesis of CuO nanoparticles using Triton X-100-based water-in-oil reverse micelles. Powder Technol. 185(3), 286–290 (2008)

    Article  CAS  Google Scholar 

  21. R. Ranjbar-Karimi, A. Bazmandegan-Shamili, A. Aslani, K. Kaviani, Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles. Phys. B Condens. Matter 405(15), 3096–3100 (2010)

    Article  CAS  Google Scholar 

  22. N. Liu, D. Wu, H. Wu, C. Liu, F. Luo, A versatile and “green” electrochemical method for synthesis of copper and other transition metal oxide and hydroxide nanostructures. Mater. Chem. Phys. 107(2–3), 511–517 (2008)

    Article  CAS  Google Scholar 

  23. Q. Liu, H. Liu, Y. Liang, Z. Xu, G. Yin, Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process. Mater. Res. Bull. 41(4), 697–702 (2006)

    Article  CAS  Google Scholar 

  24. W. Jia, E. Reitz, P. Shimpi, E.G. Rodriguez, P.X. Gao, Y. Lei, Spherical CuO synthesized by a simple hydrothermal reaction: Concentration-dependent size and its electrocatalytic application. Mater. Res. Bull. 44(8), 1681–1686 (2009)

    Article  CAS  Google Scholar 

  25. W. Jisen, Y. Jinkai, S. Jinquan, B. Ying, Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods. Mater. Des. 25(7), 625–629 (2004)

    Article  Google Scholar 

  26. W. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, G. Wang, Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant. Mater. Res. Bull. 37(6), 1093–1100 (2002)

    Article  CAS  Google Scholar 

  27. F. Bakhtiari, Synthesis and characterization of tenorite (CuO) nanoparticles from smelting furnace dust (SFD). J. Min. Metall. B Metall. 49(1), 21–21 (2013)

    Article  Google Scholar 

  28. J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, X. Wang, Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater. Lett. 58(26), 3324–3327 (2004)

    Article  CAS  Google Scholar 

  29. R. Wu, Z. Ma, Z. Gu, Y. Yang, Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC–water mixed solvent. J. Alloys Compd. 504(1), 45–49 (2010)

    Article  CAS  Google Scholar 

  30. R. Ahmadi, M.H. Hosseini, A. Masoudi, Avrami behavior of magnetite nanoparticles formation in co-precipitation process. J. Min. Metall. B Metall. 47(2), 211–218 (2011)

    Article  CAS  Google Scholar 

  31. H. Fan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie, B. Zou, Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology 15(1), 37 (2003)

    Article  Google Scholar 

  32. F. Bakhtiari, E. Darezereshki, One-step synthesis of tenorite (CuO) nano-particles from Cu4(SO4)(OH)6 by direct thermal-decomposition method. Mater. Lett. 65(2), 171–174 (2011)

    Article  CAS  Google Scholar 

  33. S. Thimmaiah, M. Rajamathi, N. Singh, P. Bera, F. Meldrum, N. Chandrasekhar, R. Seshadri, A solvothermal route to capped nanoparticles of γ-Fe2O3 and CoFe2O4. J. Mater. Chem. 11(12), 3215–3221 (2001)

    Article  CAS  Google Scholar 

  34. J. Yang, G.H. Cheng, J.H. Zeng, S.H. Yu, X.M. Liu, Y.T. Qian, Shape control and characterization of transition metal diselenides MSe2 (M=Ni, Co, Fe) prepared by a solvothermal-reduction process. Chem. Mater. 13(3), 848–853 (2001)

    Article  CAS  Google Scholar 

  35. K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology (William Andrew, 2012)

    Google Scholar 

  36. A. Umer, S. Naveed, N. Ramzan, M.S. Rafique, Selection of a suitable method for the synthesis of copper nanoparticles. Nano 7(05), 1230005 (2012)

    Article  Google Scholar 

  37. K. Byrappa, Growth of quartz crystals, in Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, (Wiley, 2005), pp. 387–406

    Google Scholar 

  38. E. Darezereshki, F. Bakhtiari, A novel technique to synthesis of tenorite (CuO) nanoparticles from low concentration CuSO4 solution. J. Min. Metall. B Metall. 47(1), 73–78 (2011)

    Article  CAS  Google Scholar 

  39. D.O. Okanigbe, Production of copper and copper oxide nano-particles from leach solution of low grade copper smelter dust. Thesis, Dissertation, 2019.

    Google Scholar 

  40. S. Makaka, M. Aziz, A. Nesbitt, Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system. J. Min. Metall. B Metall. 46, 67 (2010)

    Article  CAS  Google Scholar 

  41. N. Koga, J.M. Criado, H. Tanaka, Reaction pathway and kinetics of the thermal decomposition of synthetic brochantite. J. Therm. Anal. Calorim. 49(3), 1467–1475 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the support received from Tshwane University of Technology, the Council for Scientific and Industrial Research, and National Research Foundation in Pretoria, South Africa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O. (2023). Extraction of Copper Oxide (II): Copper Oxide Nanoparticles. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_6

Download citation

Publish with us

Policies and ethics