Skip to main content

Extraction of Copper Oxide (I): Purified CuSO4 Solution

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

Sulfuric acid leaching was conducted on waste copper dust. The deductions reached are that extraction of copper from waste copper dust (WCD) takes place rapidly and plateaus after approximately 30 minutes. This trend was observed across the different concentrations. The presence of Fe2+ in the leach solutions has the capacity to lower the Eh, thus causing the plateau in copper extraction. Pulp stirring was considered for effective leaching. However, in this study its impact on copper recovery is not significant, and this can be attributed to the substantial presence of reactive gangue minerals like quartz 11.45 wt% and mullite 42.97 wt%. The presence of reactive gangue minerals has the capacity to enhance consumption of hydrogen ions through side reactions. Hence, the removal/reduction of reactive gangue minerals from the WCD has been reported in other reports. This action is expected to reduce side reactions during leaching of copper from WCD, thereby enhancing contact time between H2SO4 solution and copper minerals as pulp is stirred. The restraining of iron dissolution achieved 29.03% iron reduction under a condition of compositional proportion of 197 mL H2SO4: 3 mL FeSO4.7H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Samuelsson, B. Björkman, Copper recycling, in Handbook of Recycling, (Elsevier, 2014), pp. 85–94

    Chapter  Google Scholar 

  2. M.E. Schlesinger, K.C. Sole, W.G. Davenport, G.R. Alvear, Extractive Metallurgy of Copper (Elsevier, 2021)

    Google Scholar 

  3. W.E. Halter, C.A. Heinrich, T. Pettke, Magma evolution and the formation of porphyry Cu–Au ore fluids: Evidence from silicate and sulfide melt inclusions. Mineral. Deposita 39(8), 845–863 (2005)

    Article  CAS  Google Scholar 

  4. D. Killick, From ores to metals, in Archaeometallurgy in Global Perspective, (Springer, New York, 2014), pp. 11–45

    Chapter  Google Scholar 

  5. M. Shamsuddin, Sulfide smelting, in Physical Chemistry of Metallurgical Processes, 2nd edn., (Springer, Cham, 2021), pp. 69–106

    Google Scholar 

  6. D. Gregurek, F. Melcher, V.A. Pavlov, C. Reimann, E.F. Stumpfl, Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel-copper processing industry, Kola Peninsula, NW Russia. Mineral. Petrol. 65(1), 87–111 (1999)

    Article  CAS  Google Scholar 

  7. P.N. Prasad, H. Thomas, A. Lennartsson, C. Samuelsson, Redistribution of minor and trace elements during roasting of Cu-rich complex concentrate in inert atmosphere. Metall. Mater. Trans. B 53(3), 1875–1893 (2022)

    Article  CAS  Google Scholar 

  8. R. Ma, L. Zhang, J. Cui, A.A. Tishkin, S.P. Grushin, E.G. Vertman, D. Chang, D. Hu, Late Bronze Age metallurgy in Rudnyi Altai. Archaeol. Anthropol. Sci. 14(8), 1–12 (2022)

    Article  Google Scholar 

  9. F. Tesfaye, D. Lindberg, D. Sukhomlinov, P. Taskinen, L. Hupa, Thermal analysis and optimization of the phase diagram of the Cu-Ag sulfide system. Energies 15(2), 593 (2022)

    Article  CAS  Google Scholar 

  10. M. Pearce, S. Merkel, A. Hauptmann, F. Nicolis, The smelting of copper in the third millennium cal BC Trentino, north-eastern Italy. Archaeol. Anthropol. Sci. 14(1), 1–21 (2022)

    Article  Google Scholar 

  11. G. Atesoglu, İ. Atilgan, Effect of roasting temperature on the leaching of chalcopyrite concentrate in sulphuric acid. Min. Metall. Explor. 39, 2199–2208 (2022)

    Google Scholar 

  12. B. Gorai, R.K. Jana, Z.H. Khan, Electrorefining electrolyte from copper plant dust. Mater. Trans. 43(3), 532–536 (2002)

    Article  CAS  Google Scholar 

  13. E. Balladares, U. Kelm, S. Helle, R. Parra, E. Araneda, Chemical-mineralogical characterization of copper smelting flue dust. Dyna 81(186), 11–18 (2014)

    Article  Google Scholar 

  14. F. Wang, Y. Zhao, T. Zhang, C. Duan, L. Wang, Mineralogical analysis of dust collected from typical recycling line of waste printed circuit boards. Waste Manag. 43, 434–441 (2015)

    Article  CAS  Google Scholar 

  15. A. Jarošíková, V. Ettler, M. Mihaljevič, P. Drahota, A. Culka, M. Racek, Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. J. Environ. Manag. 209, 71–80 (2018)

    Article  Google Scholar 

  16. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Characterization of copper smelter dust for copper recovery. Procedia Manuf. 7, 121–126 (2017)

    Article  Google Scholar 

  17. T. Henckens, Scarce mineral resources: Extraction, consumption and limits of sustainability. Resour. Conserv. Recycl. 169, 105511 (2021)

    Article  CAS  Google Scholar 

  18. A. Morales, M. Cruells, A. Roca, R. Bergó, Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization. Hydrometallurgy 105(1–2), 148–154 (2010)

    Article  CAS  Google Scholar 

  19. S. Teir, H. Revitzer, S. Eloneva, C.J. Fogelholm, R. Zevenhoven, Dissolution of natural serpentinite in mineral and organic acids. Int. J. Miner. Process. 83(1–2), 36–46 (2007)

    Article  CAS  Google Scholar 

  20. F. Habashi, A Textbook of Hydrometallurgy, 2nd edn. (Métallurgie Extractive Québec, Québec City, 1999), 750 p

    Google Scholar 

  21. R.K.K. Mbaya, M.M. Ramakokovhu, C.K. Thubakgale, Atmospheric pressure leaching application for the recovery of copper and nickel from low-grade sources, in The Southern African Institute of Mining and Metallurgy (Base Metals Conference 2013), (The Southern African Institute of Mining and Metallurgy, Johannesburg, 2013), pp. 255–268

    Google Scholar 

  22. J.Y. Wu, F.C. Chang, H.P. Wang, M.J. Tsai, C.H. Ko, C.C. Chen, Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust. Environ. Technol. 36(23), 2952–2958 (2015)

    Article  CAS  Google Scholar 

  23. P. Littlejohn, D. Dreisinger, Technical review–copper solvent extraction in hydrometallurgy. Submitted to Dr. David Dreisinger, grudzień (2007)

    Google Scholar 

  24. N.B. Du Preez, J.J. Taute, Evaluation of copper solvent-extraction circuit data and performance, in Proceedings of the 8th Southern African Base Metals Conference, Livingstone, Zambia, July 2015, pp. 6–8

    Google Scholar 

  25. Y. Chen, T. Liao, G. Li, B. Chen, X. Shi, Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction. Miner. Eng. 39, 23–28 (2012)

    Article  CAS  Google Scholar 

  26. B. Lucheva, P. Iliev, D. Kolev, Hydro-pyrometallurgical treatment of copper converter flue dust. J. Chem. Technol. Metall. 52(2), 320–325 (2017)

    CAS  Google Scholar 

  27. R.A. Shawabkeh, Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust. Hydrometallurgy 104(1), 61–65 (2010)

    Article  CAS  Google Scholar 

  28. P. Oustadakis, P.E. Tsakiridis, A. Katsiapi, S. Agatzini-Leonardou, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid. J. Hazard. Mater. 179(1–3), 1–7 (2010)

    Article  CAS  Google Scholar 

  29. A. Ghosh, H.S. Ray, Principles of Extractive Metallurgy (New Age International, 1991)

    Google Scholar 

  30. W. Stumm, G.F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 53(2), 143–146 (1961)

    Article  CAS  Google Scholar 

  31. D.R. Lawson, J.G. Wendt, Acid deposition in California. SAE Trans. 91, 3949–3967 (1982)

    Google Scholar 

  32. J.E. Dutrizac, The Fe1−x S–PbS–ZnS phase system. Can. J. Chem. 58(7), 739–743 (1980)

    Article  CAS  Google Scholar 

  33. H. Jiang, F. Lawson, Reaction mechanism for the formation of ammonium jarosite. Hydrometallurgy 82(3–4), 195–198 (2006)

    Article  CAS  Google Scholar 

  34. J.M. Bigham, U. Schwertmann, S.J. Traina, R.L. Winland, M. Wolf, Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta 60(12), 2111–2121 (1996)

    Article  CAS  Google Scholar 

  35. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, vol 664 (Wiley-VCH, Weinheim, 2003)

    Book  Google Scholar 

Download references

Acknowledgments

We thank Pantheon Virtual Engineering Solutions, Nigel, South Africa, and Tshwane University of Technology, Pretoria, South Africa, for the support received.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magwanyana, Z., Okanigbe, D.O., Popoola, A.P., Adeleke, A.A. (2023). Extraction of Copper Oxide (I): Purified CuSO4 Solution. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_5

Download citation

Publish with us

Policies and ethics