Skip to main content

Resource Recovery and Recycling from Waste Metal Dust (II): Waste Copper Dust

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

It has been suggested that South Africa (SA) prioritizes copper recycling in order to ensure that there is an adequate supply as the country’s economy becomes more energy-efficient and less dependent on fossil fuels. Based on this school of thought, this chapter discussed, among other things, the resource recovery and recycling from waste copper dust (WCD). One thing that was noticed is that SA WCD has a different chemical composition (CC) than WCD from other regions of the world. Due to the extremely low concentrations of hazardous compounds like As, Pb, and other substances, the CC of the WCD from SA complies with EU requirements for disposal in landfills. Although returning this WCD to the furnace might not be an economically viable alternative because of its fine size (5–50 μm), which harms the furnace’s refractory bricks, doing so will also result in loss of Cu value. Thus, six (6) unique proposals for resource recovery and recycling from WCD were listed in this chapter to transform this WCD into usable materials. These proposals have been published in their entirety in a number of literary works. The adoption of the ideas in these proposals is anticipated to help reduce adverse environmental consequences while also closing the copper loop (zero-waste production).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.R. Jadhao, S. Mishra, A. Pandey, K.K. Pant, K.D.P. Nigam, Biohydrometallurgy: A sustainable approach for urban mining of metals and metal refining, in Catalysis for Clean Energy and Environmental Sustainability: Biomass Conversion and Green Chemistry, vol. 1, (Springer, Cham, 2021), pp. 865–892

    Chapter  Google Scholar 

  2. M.L. Free, Metal extraction, in Hydrometallurgy, (Springer, Cham, 2022), pp. 145–196

    Chapter  Google Scholar 

  3. J.A.D. Cavalcanti, M.S. da Silva, C. Schobbenhaus, H. de Mota Lima, Geo-mining heritages of the Mariana anticline region, southeast of Quadrilátero Ferrífero-MG, Brazil: Qualitative and quantitative assessment of Chico Rei and Passagem mines. Geoheritage 13(4), 1–29 (2021)

    Article  Google Scholar 

  4. Z. Bian, X. Miao, S. Lei, S.E. Chen, W. Wang, S. Struthers, The challenges of reusing mining and mineral-processing wastes. Science 337(6095), 702–703 (2012)

    Article  CAS  Google Scholar 

  5. R. Lorenz, J. Senoner, W. Sihn, T. Netland, Using process mining to improve productivity in make-to-stock manufacturing. Int. J. Prod. Res., 59(16), 4869–4880 (2021)

    Google Scholar 

  6. Y. Taha, A. Elghali, R. Hakkou, M. Benzaazoua, Towards zero solid waste in the sedimentary phosphate industry: Challenges and opportunities. Fortschr. Mineral. 11(11), 1250 (2021)

    CAS  Google Scholar 

  7. B. Paluchamy, D.P. Mishra, D.C. Panigrahi, Airborne respirable dust in fully mechanised underground metalliferous mines–generation, health impacts and control measures for cleaner production. J. Clean. Prod. 296, 126524 (2021)

    Article  CAS  Google Scholar 

  8. M. Mpanza, E. Adam, R. Moolla, Dust deposition impacts at a liquidated gold mine village: Gauteng Province in South Africa. Int. J. Environ. Res. Public Health 17(14), 4929 (2020)

    Article  CAS  Google Scholar 

  9. T.L. Noble, A. Parbhakar-Fox, R.F. Berry, B. Lottermoser, Mineral dust emissions at metalliferous mine sites, in Environmental Indicators in Metal Mining, (Springer, Cham, 2017), pp. 281–306

    Chapter  Google Scholar 

  10. D.H. Brouwer, D. Rees, Can the South African milestones for reducing exposure to respirable crystalline silica and silicosis be achieved and reliably monitored? Front. Public Health 8, 107 (2020)

    Article  Google Scholar 

  11. G. Nelson, Living in the Shadow of a Dust Cloud: Occupational Respiratory Diseases in the South African Mining Industry, 1975 to 2009 (Doctoral Dissertation, 2014)

    Google Scholar 

  12. H. Li, J. Peng, H. Long, S. Li, L. Zhang, Cleaner process: Efficacy of chlorine in the recycling of gold from gold-containing tailings. J. Clean. Prod. 287, 125066 (2021)

    Article  CAS  Google Scholar 

  13. X. Xiao, S. Zhang, F. Sher, J. Chen, Y. Xin, Z. You, L. Wen, M. Hu, G. Qiu, A review on recycling and reutilization of blast furnace dust as a secondary resource. J. Sustain. Metall., 7(2), 340–357 (2021)

    Google Scholar 

  14. E. Matinde, G.S. Simate, S. Ndlovu, Mining and metallurgical wastes: A review of recycling and re-use practices. J. South. Afr. Inst. Min. Metall. 118(8), 825–844 (2018)

    Article  CAS  Google Scholar 

  15. A. Halog, S. Anieke, A review of circular economy studies in developed countries and its potential adoption in developing countries. Circ. Econ. Sustain., 1(1), 209–230 (2021)

    Google Scholar 

  16. S. Jawadand, K. Randive, A sustainable approach to transforming mining waste into value-added products, in Innovations in Sustainable Mining, (Springer, Cham, 2021), pp. 1–20

    Google Scholar 

  17. A. Upadhyay, T. Laing, V. Kumar, M. Dora, Exploring barriers and drivers to the implementation of circular economy practices in the mining industry. Resour. Policy 72, 102037 (2021)

    Article  Google Scholar 

  18. F. Pavloudakis, C. Roumpos, P.M. Spanidis, Optimization of surface mining operation based on a circular economy model, in Circular Economy and Sustainability, (Elsevier, Amsterdam, 2022), pp. 395–418

    Chapter  Google Scholar 

  19. Mandarin Finance and Economics, African Copper Development Association calls on South Africa to increase the scale of waste copper recycling. (2020). https://news.metal.com/newscontent/101199398/african-copper-development-association-calls-on-south-africa-to-increase-the-scale-of-waste-copper-recycling

  20. V.R. Nalule, Transitioning to a low carbon economy: Is Africa ready to bid farewell to fossil fuels? in The Palgrave Handbook of Managing Fossil Fuels and Energy Transitions, (Palgrave Macmillan, Cham, 2020), pp. 261–286

    Chapter  Google Scholar 

  21. G. Mutezo, J. Mulopo, A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renew. Sust. Energ. Rev. 137, 110609 (2021)

    Article  Google Scholar 

  22. B. Barlow, E. Fosso-Kankeu, K. Nyembwe, F. Waanders, E.N. Malenga, Prediction of Dissolution of Copper from a Chalcopyrite Carbonatite Ore of South Africa (EARET, 2018)

    Google Scholar 

  23. H. Paetzold, P. Lourens, R. Brazier, Reopening and closure of a block cave, in MassMin 2020: Proceedings of the Eighth International Conference & Exhibition on Mass Mining, (University of Chile, 2020 December), pp. 103–114

    Google Scholar 

  24. L. Hockaday, Solar thermal applications in minerals processing in South Africa, in Proceedings of the 6th South African Solar Energy Converence, (2019)

    Google Scholar 

  25. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Characterization of copper smelter dust for copper recovery. Procedia Manuf. 7, 121–126 (2017)

    Article  Google Scholar 

  26. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Hydrometallurgical processing of copper smelter dust for copper recovery as nano-particles: A review. Energ. Technol. 2017, 205–226 (2017)

    Google Scholar 

  27. D. Okanigbe, P. Olawale, A. Popoola, A. Abraham, A. Michael, K. Andrei, Centrifugal separation experimentation and optimum predictive model development for copper recovery from waste copper smelter dust. Cogent Eng. 5(1), 1551175 (2018)

    Article  Google Scholar 

  28. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, I.O. Otunniyi, O.M. Popoola, Investigating the impact of pretreating a waste copper smelter dust for likely higher recovery of copper. Procedia Manuf. 35, 430–435 (2019)

    Article  Google Scholar 

  29. D.O. Okanigbe, M.K. Ayomoh, O.M. Popoola, P.A. Popoola, V.S. Aigbodion, Oxidative roasting experimentation and optimum predictive model development for copper and iron recovery from a copper smelter dust. Results Eng. 7, 100125 (2020)

    Article  Google Scholar 

  30. W.G. Davenport, M. King, M.E. Schlesinger, A.K. Biswas, Extractive Metallurgy of Copper (Elsevier, Amsterdam, 2002)

    Google Scholar 

  31. G.A. Flores, C. Risopatron, J. Pease, Processing of complex materials in the copper industry: Challenges and opportunities ahead. JOM 72(10), 3447–3461 (2020)

    Article  CAS  Google Scholar 

  32. M.E. Schlesinger, K.C. Sole, W.G. Davenport, G.R. Alvear, Extractive Metallurgy of Copper (Elsevier, Amsterdam, 2021)

    Google Scholar 

  33. B. Lucheva, P. Iliev, D. Kolev, Hydro-pyrometallurgical treatment of copper converter flue dust. J. Chem. Technol. Metall. 52(2), 320–325 (2017)

    CAS  Google Scholar 

  34. S.A. Awe, J.E. Sundkvist, N.J. Bolin, Å. Sandström, Process flowsheet development for recovering antimony from Sb-bearing copper concentrates. Miner. Eng. 49, 45–53 (2013)

    Article  CAS  Google Scholar 

  35. A. Yazawa, Thermodynamic considerations of copper smelting. Can. Metall. Q. 13(3), 443–453 (1974)

    Article  CAS  Google Scholar 

  36. A. Yazawa, T. Azakami, Thermodynamics of removing impurities during copper smelting. Can. Metall. Q. 8(3), 257–261 (1969)

    Article  CAS  Google Scholar 

  37. F. Habashi, Copper metallurgy at the crossroads. J. Min. Metall. B: Metall. 43(1), 1–19 (2007)

    Article  CAS  Google Scholar 

  38. T. Utigard, G. Sanchez, J. Manriquez, A. Luraschi, C. Diaz, D. Cordero, E. Almendras, Reduction kinetics of liquid iron oxide-containing slags by carbon monoxide. Metall. Mater. Trans. B 28(5), 821–826 (1997)

    Article  Google Scholar 

  39. V. Montenegro, H. Sano, T. Fujisawa, Recirculation of Chilean copper smelting dust with high arsenic content to the smelting process. Mater. Trans. 49(9), 2112–2118 (2008)

    Article  CAS  Google Scholar 

  40. H. Zhou, G. Liu, L. Zhang, C. Zhou, Formation mechanism of arsenic-containing dust in the flue gas cleaning process of flash copper pyrometallurgy: A quantitative identification of arsenic speciation. Chem. Eng. J. 423, 130193 (2021)

    Article  CAS  Google Scholar 

  41. T.K. Ha, B.H. Kwon, K.S. Park, D. Mohapatra, Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust. Sep. Purif. Technol. 142, 116–122 (2015)

    Article  CAS  Google Scholar 

  42. F. Bakhtiari, H. Atashi, M. Zivdar, S.S. Bagheri, Continuous copper recovery from a smelter’s dust in stirred tank reactors. Int. J. Miner. Process. 86(1–4), 50–57 (2008)

    Article  CAS  Google Scholar 

  43. F. Bakhtiari, M. Zivdar, H. Atashi, S.S. Bagheri, Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy 90(1), 40–45 (2008)

    Article  CAS  Google Scholar 

  44. A.B. Vakylabad, M. Schaffie, M. Ranjbar, Z. Manafi, E. Darezereshki, Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors. J. Hazard. Mater. 241, 197–206 (2012)

    Article  Google Scholar 

  45. A. Morales, M. Cruells, A. Roca, R. Bergo, Characterization of flue dusts from a copper smelter furnace, copper recovery and arsenic stabilization, in The John E. Dutrizac International Symposium on Copper Hydrometallurgy, Cu 2007, ed. by P.A. Riveros, D.G. Dixon, D.B. Dreisinger, M.J. Collins, vol. 4, (2007), pp. 177–189

    Google Scholar 

  46. E. Balladares, U. Kelm, S. Helle, R. Parra, E. Araneda, Chemical-mineralogical characterization of copper smelting flue dust. Dyna 81(186), 11–18 (2014)

    Article  Google Scholar 

  47. B. Xu, Y. Ma, W. Gao, J. Yang, Y. Yang, Q. Li, T. Jiang, A review of the comprehensive recovery of valuable elements from copper smelting open-circuit dust and arsenic treatment. JOM 72(11), 3860–3875 (2020)

    Article  CAS  Google Scholar 

  48. D.O. Okanigbe, Production of Copper and Copper Oxide Nano-Particles from Leach Solution of Low Grade Copper Smelter Dust (2019)

    Google Scholar 

  49. L. Qiang, I.S. Pinto, Z. Youcai, Sequential stepwise recovery of selected metals from flue dusts of secondary copper smelting. J. Clean. Prod. 84, 663–670 (2014)

    Article  CAS  Google Scholar 

  50. M. Vítková, V. Ettler, J. Hyks, T. Astrup, B. Kříbek, Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Appl. Geochem. 26, S263–S266 (2011)

    Article  Google Scholar 

  51. O. Font, N.A.T.A.L.I.A. Moreno, G. Aixa, X.A.V.I.E.R. Querol, R.O.D.R.I.G.O. Navia, Copper smelting flue dust: A potential source of germanium. Rev. Soc. Esp. Mineral. 15, 87–88 (2011)

    Google Scholar 

  52. A.B. Vakylabad, A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust. Int. J. Miner. Process. 101(1–4), 94–99 (2011)

    Article  CAS  Google Scholar 

  53. F.J. Alguacil, I. Garcia-Diaz, F. Lopez, O. Rodriguez, Recycling of copper flue dust via leaching-solvent extraction processing. Desalin. Water Treat. 56(5), 1202–1207 (2015)

    Article  CAS  Google Scholar 

  54. V. Ettler, M. Vítková, M. Mihaljevič, O. Šebek, M. Klementová, F. Veselovský, P. Vybíral, B. Kříbek, Dust from Zambian smelters: Mineralogy and contaminant bioaccessibility. Environ. Geochem. Health 36(5), 919–933 (2014)

    Article  CAS  Google Scholar 

  55. Z.F. Xu, L.I. Qiang, H.P. Nie, Pressure leaching technique of smelter dust with high-copper and high-arsenic. Trans. Nonferrous Metals Soc. China 20, s176–s181 (2010)

    Article  CAS  Google Scholar 

  56. V. Montenegro, H. Sano, T. Fujisawa, Recirculation of high arsenic content copper smelting dust to smelting and converting processes. Miner. Eng. 49, 184–189 (2013)

    Article  CAS  Google Scholar 

  57. T. Li, Y. Wang, W.J. Li, J.M. Chen, T. Wang, W.X. Wang, Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: Regional sources and cloud processing. Atmos. Chem. Phys. 15(15), 8987–9002 (2015)

    Article  CAS  Google Scholar 

  58. X. Guo, J. Shi, Y. Yi, Q. Tian, D. Li, Separation and recovery of arsenic from arsenic-bearing dust. J. Environ. Chem. Eng. 3(3), 2236–2242 (2015)

    Article  CAS  Google Scholar 

  59. J. Gao, Z. Huang, Z. Wang, Z. Guo, Recovery of crown zinc and metallic copper from copper smelter dust by evaporation, condensation and super-gravity separation. Sep. Purif. Technol. 231, 115925 (2020)

    Article  CAS  Google Scholar 

  60. A. Shahnazi, S. Firoozi, D.H. Fatmehsari, Selective leaching of arsenic from copper converter flue dust by Na2S and its stabilization with Fe2 (SO4) 3. Trans. Nonferrous Metals Soc. China 30(6), 1674–1686 (2020)

    Article  CAS  Google Scholar 

  61. A. Morales, M. Cruells, A. Roca, R. Bergó, Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization. Hydrometallurgy 105(1–2), 148–154 (2010)

    Article  CAS  Google Scholar 

  62. L.G. Twidwell, A.K. Mehta, Disposal of arsenic bearing copper smelter flue dust. Nucl. Chem. Waste Manag. 5(4), 297–303 (1985)

    Article  CAS  Google Scholar 

  63. V. Dutre, C. Vandecasteele, Immobilization mechanism of arsenic in waste solidified using cement and lime. Environ. Sci. Technol. 32(18), 2782–2787 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to express his gratitude to Tshwane University of Technology in Pretoria, South Africa, for allowing use of facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O. (2023). Resource Recovery and Recycling from Waste Metal Dust (II): Waste Copper Dust. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_2

Download citation

Publish with us

Policies and ethics