Skip to main content

Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (II): CO2 Capture from Coal-Fired Thermal Power Plants

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

Since it is expensive to synthesize hydrotalcite (HT) from pure chemicals, the production of hydrotalcite from South African mullite-rich tailings (MRT), a waste metal dust (WMD) from gravity separation of waste copper dust (WCD), may offer an alternative use for this WMD and provide the nation with its own, low-cost HT, a CO2 sorbent. With the MRT as a case study, this proposed research will examine the synthesis and characterization of HT-derived material from MRT for CO2 capture from coal-fired thermal power plants. The following sub-objectives will help to accomplish the proposed main objective: density separation of WCD to produce different MRT compositions; HT synthesis from the different compositions of MRT; and HT characterization to identify structural properties that will allow comparison with other HT materials with a good reputation on the market. The results of the comparison analysis will help to provide the foundation on which the appropriateness of using MRT to manufacture HT and the preparation techniques for efficiently producing HT with the necessary qualities from MRT is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Lim, J. Kim, J. Jung, C.S. Lee, C. Han, Modeling and simulation of CO2 capture process for coal-based power plant using amine solvent in South Korea. Energy Procedia 37, 1855–1862 (2013)

    Article  CAS  Google Scholar 

  2. P.T. Sekoai, M.O. Daramola, Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res. J. 2(2), 223–226 (2015)

    Article  CAS  Google Scholar 

  3. K.O. Yoro, P.T. Sekoai, The potential of CO2 capture and storage technology in South Africa’s coal-fired thermal power plants. Environments 3(3), 24 (2016)

    Article  Google Scholar 

  4. P.T. Sekoai, K.O. Yoro, Biofuel development initiatives in sub-Saharan Africa: Opportunities and challenges. Climate 4(2), 33 (2016)

    Article  Google Scholar 

  5. D.J. Wuebbles, A.K. Jain, Concerns about climate change and the role of fossil fuel use. Fuel Process. Technol. 71(1–3), 99–119 (2001)

    Article  CAS  Google Scholar 

  6. A. Engelbrecht, A. Golding, S. Hietkamp, S. Scholes, The potential for sequestration of carbon dioxide in South Africa. Report for the Department of Minerals & Energy. Pretoria, Council for Scientific and Industrial Research, 2004

    Google Scholar 

  7. P.J.D. Lloyd, Carbon Capture and Storage in South Africa: Development and Climate Change (University of Cape Town, Cape Town, 2014)

    Google Scholar 

  8. T.F. Wall, Combustion processes for carbon capture. Proc. Combust. Inst. 31(1), 31–47 (2007)

    Article  Google Scholar 

  9. R.S. Middleton, J.K. Eccles, The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power. Appl. Energy 108, 66–73 (2013)

    Article  CAS  Google Scholar 

  10. K.J. Fricker, A.H.A. Park, Investigation of the different carbonate phases and their formation kinetics during Mg (OH) 2 slurry carbonation. Ind. Eng. Chem. Res. 53(47), 18170–18179 (2014)

    Article  CAS  Google Scholar 

  11. B. Li, Y. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology: A patent review. Appl. Energy 102, 1439–1447 (2013)

    Article  CAS  Google Scholar 

  12. D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 49(35), 6058–6082 (2010)

    Article  CAS  Google Scholar 

  13. A.J. Reynolds, T.V. Verheyen, S.B. Adeloju, A.L. Chaffee, E. Meuleman, Monoethanolamine degradation during pilot-scale post-combustion capture of CO2 from a brown coal-fired power station. Energy Fuel 29(11), 7441–7455 (2015)

    Article  CAS  Google Scholar 

  14. A.S. Bhown, B.C. Freeman, Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 45(20), 8624–8632 (2011)

    Article  CAS  Google Scholar 

  15. J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7(11), 3478–3518 (2014)

    Article  CAS  Google Scholar 

  16. S.Y. Lee, S.J. Park, A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Article  Google Scholar 

  17. A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environ. Sci. Technol. 50(14), 7276–7289 (2016)

    Article  CAS  Google Scholar 

  18. G.N. Muriithi, L.F. Petrik, O. Fatoba, W.M. Gitari, F.J. Doucet, J. Nel, S.M. Nyale, P.E. Chuks, Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J. Environ. Manag. 127, 212–220 (2013)

    Article  CAS  Google Scholar 

  19. A. Dindi, D.V. Quang, L.F. Vega, E. Nashef, M.R. Abu-Zahra, Applications of fly ash for CO2 capture, utilization, and storage. J. CO2 Util. 29, 82–102 (2019)

    Article  CAS  Google Scholar 

  20. S.M.H. Asl, H. Javadian, M. Khavarpour, C. Belviso, M. Taghavi, M. Maghsudi, Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. J. Clean. Prod. 208, 1131–1147 (2019)

    Article  Google Scholar 

  21. A. Sanna, M.M. Maroto-Valer, Potassium-based sorbents from fly ash for high-temperature CO2 capture. Environ. Sci. Pollut. Res. 23(22), 22242–22252 (2016)

    Article  CAS  Google Scholar 

  22. Y.A. Alhamed, S.U. Rather, A.H. El-Shazly, S.F. Zaman, M.A. Daous, A.A. Al-Zahrani, Preparation of activated carbon from fly ash and its application for CO2 capture. Korean J. Chem. Eng. 32(4), 723–730 (2015)

    Article  CAS  Google Scholar 

  23. A. Sanna, M.M. Maroto-Valer, CO2 capture at high temperature using fly ash-derived sodium silicates. Ind. Eng. Chem. Res. 55(14), 4080–4088 (2016)

    Article  CAS  Google Scholar 

  24. R. Panek, M. Wdowin, W. Franus, D. Czarna, L.A. Stevens, H. Deng, J. Liu, C. Sun, H. Liu, C.E. Snape, Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J. CO2 Util. 22, 81–90 (2017)

    Article  CAS  Google Scholar 

  25. L. Liu, R. Singh, P. Xiao, P.A. Webley, Y. Zhai, Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 17(5), 795–800 (2011)

    Article  CAS  Google Scholar 

  26. G.N. Muriithi, L.F. Petrik, W.M. Gitari, F.J. Doucet, Synthesis and characterization of hydrotalcite from South African Coal fly ash. Powder Technol. 312, 299–309 (2017)

    Article  CAS  Google Scholar 

  27. P.W. Du Plessis, T.V. Ojumu, O.O. Fatoba, R.O. Akinyeye, L.F. Petrik, Distributional fate of elements during the synthesis of zeolites from South African coal fly ash. Materials 7(4), 3305–3318 (2014)

    Article  Google Scholar 

  28. M. Ivanov, K. Klemkaite, A. Khinsky, A. Kareiva, J. Banys, Dielectric and conductive properties of hydrotalcite. Ferroelectrics 417(1), 136–142 (2011)

    Article  CAS  Google Scholar 

  29. K. Hosni, E. Srasra, Simplified synthesis of layered double hydroxide using a natural source of magnesium. Appl. Clay Sci. 43(3–4), 415–419 (2009)

    Article  CAS  Google Scholar 

  30. P. Kunecki, R. Panek, M. Wdowin, W. Franus, Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. Int. J. Miner. Process. 166, 69–78 (2017)

    Article  CAS  Google Scholar 

  31. P. Kunecki, R. Panek, A. Koteja, W. Franus, Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres. Microporous Mesoporous Mater. 266, 102–108 (2018)

    Article  CAS  Google Scholar 

  32. T. Wajima, Synthesis of hydrotalcite from bittern, and its removal abilities of phosphate and nitrate. Int. J. Chem. Eng. Appl. 6(4), 228 (2015)

    CAS  Google Scholar 

  33. Y. Kuwahara, T. Ohmichi, T. Kamegawa, K. Mori, H. Yamashita, A novel conversion process for waste slag: Synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities. J. Mater. Chem. 20(24), 5052–5062 (2010)

    Article  CAS  Google Scholar 

  34. R. Galindo, A. López-Delgado, I. Padilla, M. Yates, Synthesis and characterisation of hydrotalcites produced by an aluminium hazardous waste: A comparison between the use of ammonia and the use of triethanolamine. Appl. Clay Sci. 115, 115–123 (2015)

    Article  CAS  Google Scholar 

  35. R. Galindo, I. Padilla, R. Sánchez-Hernández, J.I. Robla, G. Monrós, A. López-Delgado, Production of added-value materials from a hazardous waste in the aluminium tertiary industry: Synergistic effect between hydrotalcites and glasses. J. Environ. Chem. Eng. 3(4), 2552–2559 (2015)

    Article  CAS  Google Scholar 

  36. A. Gil, E. Arrieta, M.A. Vicente, S.A. Korili, Synthesis and CO2 adsorption properties of hydrotalcite-like compounds prepared from aluminum saline slag wastes. Chem. Eng. J. 334, 1341–1350 (2018)

    Article  CAS  Google Scholar 

  37. U. Neveling, Palabora mining company annual report on ambient air quality monitoring, 2011

    Google Scholar 

  38. D.O. Okanigbe, Production of copper and copper oxide nano-particles from leach solution of low grade copper smelter dust, 2019

    Google Scholar 

  39. D. Okanigbe, P. Olawale, A. Popoola, A. Abraham, A. Michael, K. Andrei, Centrifugal separation experimentation and optimum predictive model development for copper recovery from waste copper smelter dust. Cogent Eng. 5(1), 1551175 (2018)

    Article  Google Scholar 

  40. U. Schacht, C. Jenkins, Soil gas monitoring of the Otway Project demonstration site in SE Victoria, Australia. Int. J. Greenhouse Gas Control 24, 14–29 (2014)

    Article  CAS  Google Scholar 

  41. S.E. Beaubien, D.G. Jones, F. Gal, A.K.A.P. Barkwith, G. Braibant, J.C. Baubron, G. Ciotoli, S. Graziani, T.R. Lister, S. Lombardi, K. Michel, Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011. Int. J. Greenhouse Gas Control 16, S236–S262 (2013)

    Article  CAS  Google Scholar 

  42. M. Maver, Barriers to carbon capture and storage. Available online: http://ehsjournal.org/marko-maver/barriers-to-carbon-capture-and-storage-ccs/2012/. Accessed on 5 June 2016

  43. A. Voleno, M.C. Romano, D.M. Turi, P. Chiesa, M.T. Ho, D.E. Wiley, Post-combustion CO2 capture from natural gas combined cycles by solvent supported membranes. Energy Procedia 63, 7389–7397 (2014)

    Article  CAS  Google Scholar 

  44. C. Zhang, D. Zhou, P. Li, F. Li, Y. Zhang, Z. Sun, Z. Zhao, CO2 storage potential of the Qiongdongnan Basin, northwestern South China Sea. Greenhouse Gases Sci. Technol. 4(6), 691–706 (2014)

    Article  Google Scholar 

  45. M.Y. Lee, H. Hashim, Modelling and optimization of CO2 abatement strategies. J. Clean. Prod. 71, 40–47 (2014)

    Article  CAS  Google Scholar 

  46. H. Leion, E. Jerndal, B.M. Steenari, S. Hermansson, M. Israelsson, E. Jansson, M. Johnsson, R. Thunberg, A. Vadenbo, T. Mattisson, A. Lyngfelt, Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel 88(10), 1945–1954 (2009)

    Article  CAS  Google Scholar 

  47. Y. Man, S. Yang, D. Xiang, X. Li, Y. Qian, Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture. J. Clean. Prod. 71, 59–66 (2014)

    Article  CAS  Google Scholar 

  48. P. Mores, N. Rodríguez, N. Scenna, S. Mussati, CO2 capture in power plants: Minimization of the investment and operating cost of the post-combustion process using MEA aqueous solution. Int. J. Greenhouse Gas Control 10, 148–163 (2012)

    Article  Google Scholar 

  49. J.R. Hufton, S. Mayorga, S. Sircar, Sorption-enhanced reaction process for hydrogen production. AICHE J. 45(2), 248–256 (1999)

    Article  CAS  Google Scholar 

  50. Z. Yong, V. Mata, A.E. Rodrigues, Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Ind. Eng. Chem. Res. 40(1), 204–209 (2001)

    Article  CAS  Google Scholar 

  51. J. Hufton, S. Mayorga, T. Gaffhey, S. Nataraj, Sorption enhanced reaction process (SERP) for the production of hydrogen, in Hydrogen Program Review, 21–23 May 1997

    Google Scholar 

  52. J. Santhanalakshmi, T. Raja, Selective N-methylation of aniline by calcined MgIIAlIII layered double hydroxides. Appl. Catal. A Gen. 147(1), 69–80 (1996)

    Article  CAS  Google Scholar 

  53. W.T. Reichle, Pulse microreactor examination of the vapor-phase aldol condensation of acetone. J. Catal. 63(2), 295–306 (1980)

    Article  CAS  Google Scholar 

  54. A. Corma, S. Iborra, J. Primo, F. Rey, One-step synthesis of citronitrile on hydrotalcite derived base catalysts. Appl. Catal. A Gen. 114(2), 215–225 (1994)

    Article  CAS  Google Scholar 

  55. C. Cativiela, F. Figueras, J. Fraile, J. García, J. Mayoral, Hydrotalcite-promoted epoxidation of electron-deficient alkenes with hydrogen peroxide. Tetrahedron Lett. 36(23), 4125–4128 (1995)

    Article  CAS  Google Scholar 

  56. H. Schaper, J.J. Berg-Slot, W.H.J. Stork, Stabilized magnesia: A novel catalyst (support) material. Appl. Catal. 54(1), 79–90 (1989)

    Article  CAS  Google Scholar 

  57. K. Parida, J. Das, Mg/Al hydrotalcites: Preparation, characterisation and ketonisation of acetic acid. J. Mol. Catal. A Chem. 151(1–2), 185–192 (2000)

    Article  CAS  Google Scholar 

  58. S. Velu, C.S. Swamy, Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds. Appl. Catal. A Gen. 145(1–2), 141–153 (1996)

    Article  CAS  Google Scholar 

  59. A.L. McKenzie, C.T. Fishel, R.J. Davis, Investigation of the surface structure and basic properties of calcined hydrotalcites. J. Catal. 138(2), 547–561 (1992)

    Article  CAS  Google Scholar 

  60. M. Corsten, A. Ramírez, L. Shen, J. Koornneef, A. Faaij, Environmental impact assessment of CCS chains–lessons learned and limitations from LCA literature. Int. J. Greenhouse Gas Control 13, 59–71 (2013)

    Article  CAS  Google Scholar 

  61. B. Nykvist, Ten times more difficult: Quantifying the carbon capture and storage challenge. Energy Policy 55, 683–689 (2013)

    Article  Google Scholar 

  62. B.K. Sovacool, B. Brossmann, Symbolic convergence and the hydrogen economy. Energy Policy 38(4), 1999–2012 (2010)

    Article  Google Scholar 

  63. B.K. Sovacool, M.V. Ramana, Back to the future: Small modular reactors, nuclear fantasies, and symbolic convergence. Sci. Technol. Hum. Values 40(1), 96–125 (2015)

    Article  Google Scholar 

  64. J.P. Verdon, Significance for secure CO2 storage of earthquakes induced by fluid injection. Environ. Res. Lett. 9(6), 064022 (2014)

    Article  CAS  Google Scholar 

  65. L. Vesnic-Alujevic, M. Breitegger, A.G. Pereira, What smart grids tell about innovation narratives in the European Union: Hopes, imaginaries and policy. Energy Res. Soc. Sci. 12, 16–26 (2016)

    Article  Google Scholar 

  66. M. Lisjak, A.Y. Lee, W.L. Gardner, When a threat to the brand is a threat to the self: The importance of brand identification and implicit self-esteem in predicting defensiveness. Personal. Soc. Psychol. Bull. 38(9), 1120–1132 (2012)

    Article  Google Scholar 

  67. M.G. Little, R.B. Jackson, Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environ. Sci. Technol. 44(23), 9225–9232 (2010)

    Article  CAS  Google Scholar 

  68. P. Hoggett, Government and the perverse social defence. Br. J. Psychother. 26(2), 202–212 (2010)

    Article  Google Scholar 

  69. A. Corti, L. Lombardi, Reduction of carbon dioxide emissions from a SCGT/CC by ammonia solution absorption–preliminary results. Int. J. Thermodyn. 7(4), 173–181 (2004)

    Google Scholar 

  70. B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal–organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture? Chem. Soc. Rev. 44(8), 2421–2454 (2015)

    Article  CAS  Google Scholar 

  71. H. Feng, S. Wu, S. Huang, Y. Wu, J. Gao, Regenerable magnesium-based sorbent for high-pressure and moderate-temperature CO2 capture: Physicochemical structures and capture performances. Fuel 159, 559–569 (2015)

    Article  CAS  Google Scholar 

  72. A. Alaswad, M. Dassisti, T. Prescott, A.G. Olabi, Technologies and developments of third generation biofuel production. Renew. Sust. Energ. Rev. 51, 1446–1460 (2015)

    Article  CAS  Google Scholar 

  73. A.S. Alshehry, M. Belloumi, Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renew. Sust. Energ. Rev. 41, 237–247 (2015)

    Article  Google Scholar 

  74. C. Ampelli, S. Perathoner, G. Centi, CO2 utilization: An enabling element to move to a resource-and energy-efficient chemical and fuel production. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2037), 20140177 (2015)

    Article  Google Scholar 

  75. R.R. Ang, L.T. Sin, S.T. Bee, T.T. Tee, A.A.H. Kadhum, A.R. Rahmat, B.A. Wasmi, A review of copolymerization of greenhouse gas carbon dioxide and oxiranes to produce polycarbonate. J. Clean. Prod. 102, 1–17 (2015)

    Article  CAS  Google Scholar 

  76. M. Anjos, B.D. Fernandes, A.A. Vicente, J.A. Teixeira, G. Dragone, Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139, 149–154 (2013)

    Article  CAS  Google Scholar 

  77. P. Babu, P. Linga, R. Kumar, P. Englezos, A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85, 261–279 (2015)

    Article  CAS  Google Scholar 

  78. D.B. Bacik, W. Yuan, C.B. Roberts, M.R. Eden, Systems analysis of benign hydrogen peroxide synthesis in supercritical CO2, in Computer Aided Chemical Engineering, vol. 29, (Elsevier, 2011), pp. 392–396

    Google Scholar 

  79. I.A. Berg, Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77(6), 1925–1936 (2011)

    Article  CAS  Google Scholar 

  80. G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148(3–4), 191–205 (2009)

    Article  CAS  Google Scholar 

  81. W.Y. Cheah, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184, 190–201 (2015)

    Article  CAS  Google Scholar 

  82. C.Y. Chen, X.Q. Zhao, H.W. Yen, S.H. Ho, C.L. Cheng, D.J. Lee, F.W. Bai, J.S. Chang, Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1–10 (2013)

    Article  CAS  Google Scholar 

  83. J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou, K. Cen, Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour. Technol. 144, 321–327 (2013)

    Article  CAS  Google Scholar 

  84. J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou, K. Cen, Mutate chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour. Technol. 136, 496–501 (2013)

    Article  CAS  Google Scholar 

  85. H.H. Cheng, L.M. Whang, K.C. Chan, M.C. Chung, S.H. Wu, C.P. Liu, S.Y. Tien, S.Y. Chen, J.S. Chang, W.J. Lee, Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour. Technol. 184, 379–385 (2015)

    Article  CAS  Google Scholar 

  86. C.L. Chiang, C.M. Lee, P.C. Chen, Utilization of the cyanobacteria anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresour. Technol. 102(9), 5400–5405 (2011)

    Article  CAS  Google Scholar 

  87. A.B. Fulke, K. Krishnamurthi, M.D. Giripunje, S.S. Devi, T. Chakrabarti, Biosequestration of carbon dioxide, biomass, calorific value and biodiesel precursors production using a novel flask culture photobioreactor. Biomass Bioenergy 72, 136–142 (2015)

    Article  CAS  Google Scholar 

  88. Y. Tan, W. Nookuea, H. Li, E. Thorin, J. Yan, Property impacts on Carbon Capture and Storage (CCS) processes: A review. Energy Convers. Manag. 118, 204–222 (2016)

    Article  CAS  Google Scholar 

  89. A. Raza, R. Rezaee, C.H. Bing, R. Gholami, M.A. Hamid, R. Nagarajan, Carbon dioxide storage in subsurface geologic medium: A review on capillary trapping mechanism. Egypt. J. Pet. 25(3), 367–373 (2016)

    Article  Google Scholar 

  90. J.A. Lake, I. Johnson, D.D. Cameron, Carbon Capture and Storage (CCS) pipeline operating temperature effects on UK soils: The first empirical data. Int. J. Greenhouse Gas Control 53, 11–17 (2016)

    Article  Google Scholar 

  91. D.Y. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443 (2014)

    Article  CAS  Google Scholar 

  92. F. Chu, C. Jon, L. Yang, X. Du, Y. Yang, CO2 absorption characteristics in ammonia solution inside the structured packed column. Ind. Eng. Chem. Res. 55(12), 3696–3709 (2016)

    Article  CAS  Google Scholar 

  93. G. Hu, N.J. Nicholas, K.H. Smith, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenhouse Gas Control 53, 28–40 (2016)

    Article  CAS  Google Scholar 

  94. K.O. Kwak, S.J. Jung, S.Y. Chung, C.M. Kang, Y.I. Huh, S.O. Bae, Optimization of culture conditions for CO2 fixation by a chemoautotrophic microorganism, strain YN-1 using factorial design. Biochem. Eng. J. 31(1), 1–7 (2006)

    Article  CAS  Google Scholar 

  95. G.T. Rochelle, Amine scrubbing for CO2 capture. Science 325(5948), 1652–1654 (2009)

    Article  CAS  Google Scholar 

  96. S. Kim, C.B. Park, Bio-inspired synthesis of minerals for energy, environment, and medicinal applications. Adv. Funct. Mater. 23(1), 10–25 (2013)

    Article  CAS  Google Scholar 

  97. S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 115(16), 8230–8293 (2015)

    Article  CAS  Google Scholar 

  98. S. Quan, S. Li, Z. Wang, X. Yan, Z. Guo, L. Shao, A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation. J. Mater. Chem. A 3(26), 13758–13766 (2015)

    Article  CAS  Google Scholar 

  99. U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)

    Article  CAS  Google Scholar 

  100. C.H. Lau, P. Li, F. Li, T.S. Chung, D.R. Paul, Reverse-selective polymeric membranes for gas separations. Prog. Polym. Sci. 38(5), 740–766 (2013)

    Article  CAS  Google Scholar 

  101. J. Su, R.C. Ong, P. Wang, T.S. Chung, B.J. Helmer, J.S. De Wit, Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FO-MD hybrid system. AICHE J. 59(4), 1245–1254 (2013)

    Article  CAS  Google Scholar 

  102. D.W. Mangindaan, N.M. Woon, G.M. Shi, T.S. Chung, P84 polyimide membranes modified by a tripodal amine for enhanced pervaporation dehydration of acetone. Chem. Eng. Sci. 122, 14–23 (2015)

    Article  CAS  Google Scholar 

  103. A.W. Xu, Y. Ma, H. Cölfen, Biomimetic mineralization. J. Mater. Chem. 17(5), 415–449 (2007)

    Article  CAS  Google Scholar 

  104. Y. Cai, J. Yao, Effect of proteins on the synthesis and assembly of calcium phosphate nanomaterials. Nanoscale 2(10), 1842–1848 (2010)

    Article  CAS  Google Scholar 

  105. B. Mondal, J. Song, F. Neese, S. Ye, Bio-inspired mechanistic insights into CO2 reduction. Curr. Opin. Chem. Biol. 25, 103–109 (2015)

    Article  CAS  Google Scholar 

  106. M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: A review. Energy 46(1), 431–441 (2012)

    Article  CAS  Google Scholar 

  107. E.S. Rubin, C. Chen, A.B. Rao, Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35(9), 4444–4454 (2007)

    Article  Google Scholar 

  108. G. Cau, V. Tola, P. Deiana, Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems. Fuel 116, 820–833 (2014)

    Article  CAS  Google Scholar 

  109. M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011)

    Article  CAS  Google Scholar 

  110. G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion—A review of the current state-of-the-art. Int. J. Greenhouse Gas Control 5, S16–S35 (2011)

    Article  CAS  Google Scholar 

  111. S. Rehfeldt, C. Kuhr, F.P. Schiffer, P. Weckes, C. Bergins, First test results of Oxyfuel combustion with Hitachi’s DST-burner at Vattenfall’s 30 MWth Pilot Plant at Schwarze Pumpe. Energy Procedia 4, 1002–1009 (2011)

    Article  Google Scholar 

  112. C.C. Cormos, K. Vatopoulos, E. Tzimas, Assessment of the consumption of water and construction materials in state-of-the-art fossil fuel power generation technologies involving CO2 capture. Energy 51, 37–49 (2013)

    Article  CAS  Google Scholar 

  113. O.R. Rivas, J.M. Prausnitz, Sweetening of sour natural gases by mixed-solvent absorption: Solubilities of ethane, carbon dioxide, and hydrogen sulfide in mixtures of physical and chemical solvents. AICHE J. 25(6), 975–984 (1979)

    Article  CAS  Google Scholar 

  114. A.L. Chaffee, G.P. Knowles, Z. Liang, J. Zhang, P. Xiao, P.A. Webley, CO2 capture by adsorption: Materials and process development. Int. J. Greenhouse Gas Control 1(1), 11–18 (2007)

    Article  CAS  Google Scholar 

  115. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 20(1), 14–27 (2008)

    Article  CAS  Google Scholar 

  116. M.R. Othman, R. Zakaria, W.J.N. Fernando, Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review. Energy Policy 37(5), 1718–1735 (2009)

    Article  Google Scholar 

  117. L. Álvarez, C. Yin, J. Riaza, C. Pevida, J.J. Pis, F. Rubiera, Biomass co-firing under oxy-fuel conditions: A computational fluid dynamics modelling study and experimental validation. Fuel Process. Technol. 120, 22–33 (2014)

    Article  Google Scholar 

  118. C.C. Cormos, Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage. Int. J. Hydrog. Energy 35(14), 7485–7497 (2010)

    Article  CAS  Google Scholar 

  119. M.H. Bade, S. Bandyopadhyay, Analysis of gas turbine integrated cogeneration plant: Process integration approach. Appl. Therm. Eng. 78, 118–128 (2015)

    Article  Google Scholar 

  120. C. Dinca, A. Badea, The parameters optimization for a CFBC pilot plant experimental study of post-combustion CO2 capture by reactive absorption with MEA. Int. J. Greenhouse Gas Control 12, 269–279 (2013)

    Article  CAS  Google Scholar 

  121. R. Domenichini, S. Arienti, P. Cotone, S. Santos, Evaluation and analysis of water usage and loss of power in plants with CO2 capture. Energy Procedia 4, 1925–1932 (2011)

    Article  Google Scholar 

  122. V. Tola, A. Pettinau, Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies. Appl. Energy 113, 1461–1474 (2014)

    Article  CAS  Google Scholar 

  123. A.M. Oehlert, K.A. Lamb-Wozniak, Q.B. Devlin, G.J. Mackenzie, J.J. Reijmer, P.K. Swart, The stable carbon isotopic composition of organic material in platform derived sediments: Implications for reconstructing the global carbon cycle. Sedimentology 59(1), 319–335 (2012)

    Article  CAS  Google Scholar 

  124. M. Zhao, A.I. Minett, A.T. Harris, A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 6(1), 25–40 (2013)

    Article  CAS  Google Scholar 

  125. D.O. Okanigbe, A.P.I. Popoola, A.A. Adeleke, Characterization of copper smelter dust for copper recovery. Procedia Manuf. 7, 121–126 (2017)

    Article  Google Scholar 

  126. P.L. Linda, D.O. Okanigbe, A.P.I. Popoola, O.M. Popoola, Characterization of density separated mullite-rich tailings from a secondary copper resource, a potential reinforcement material for development of an enhanced thermally conductive and wear resistant ti-6al-4v matrix composite, in The Proceedings of the 60th International Conference of Metallurgist, (Canada, 2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O., Van Der Merwe, S.R. (2023). Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (II): CO2 Capture from Coal-Fired Thermal Power Plants. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_12

Download citation

Publish with us

Policies and ethics