Skip to main content

Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (I): Transesterification of Used Cooking Oil to Biodiesel

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

One billion liters of biodiesel are thought to be the potential market size in South Africa (SA). To build a stable and expanding market for biodiesel in SA, government regulations and policies are necessary while proactive steps are needed, particularly in the area of creative efforts that can help lower the cost of biodiesel production down to a respectable level. Converting wastes into products is an example of these creative efforts alluded to in the statement before. Thus, it is suggested that the potential for turning two categories of wastes into product and their effects on SA’s biodiesel industry’s economics be studied. The utilization of waste cooking oil (WCO) as a feedstock for the production of biodiesel in this study will be the first category of waste conversion to product. The transesterification process of converting WCO to biodiesel, using mullite-rich tailings (MRT) from density-separated waste copper dust, will be the second category of waste conversion to product. These concepts were prompted as a result of the fact that the use of edible oil to produce biodiesel could potentially lead to a diminution of the oil available as food for both humans and farm animals. Also, the idea to manufacture and characterize hydrotalcite-derived material (HDM) from waste metal dust for the transesterification of WCO to biodiesel utilizing MRT as starting material results from the fact that producing HDM from pure chemicals is expensive. Hence, the proposed study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Corral Bobadilla, R. Lostado Lorza, R. Escribano García, F. Somovilla Gómez, E.P. Vergara González, An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies 10(1), 130 (2017)

    Article  Google Scholar 

  2. S.G.I.L. Pinzi, I.L. Garcia, F.J. Lopez-Gimenez, M.D. Luque de Castro, G. Dorado, M.P. Dorado, The ideal vegetable oil-based biodiesel composition: A review of social, economical and technical implications. Energy Fuel 23(5), 2325–2341 (2009)

    Article  CAS  Google Scholar 

  3. M.P. Dorado, E. Ballesteros, J.A. De Almeida, C. Schellert, H.P. Löhrlein, R. Krause, An alkali–catalyzed transesterification process for high free fatty acid waste oils. Trans. ASAE 45(3), 525 (2002)

    Article  CAS  Google Scholar 

  4. M.P. Dorado, E. Ballesteros, F.J. López, M. Mittelbach, Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energy Fuel 18(1), 77–83 (2004)

    Article  CAS  Google Scholar 

  5. Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: A review. Fuel 90(4), 1309–1324 (2011)

    Article  CAS  Google Scholar 

  6. H.V. Lee, J.C. Juan, T.Y. Yun Hin, H.C. Ong, Environment-friendly heterogeneous alkaline-based mixed metal oxide catalysts for biodiesel production. Energies 9(8), 611 (2016)

    Article  Google Scholar 

  7. G. Arzamendi, I. Campo, E. Arguinarena, M. Sánchez, M. Montes, L.M. Gandia, Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chem. Eng. J. 134(1–3), 123–130 (2007)

    Article  CAS  Google Scholar 

  8. I. Reyero, G. Arzamendi, L.M. Gandía, Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chem. Eng. Res. Des. 92(8), 1519–1530 (2014)

    Article  CAS  Google Scholar 

  9. E. Santacesaria, G.M. Vicente, M. Di Serio, R. Tesser, Main technologies in biodiesel production: State of the art and future challenges. Catal. Today 195(1), 2–13 (2012)

    Article  CAS  Google Scholar 

  10. E.J.M. de Paiva, S. Sterchele, M.L. Corazza, D.Y. Murzin, F. Wypych, T. Salmi, Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate–kinetic modeling. Fuel 153, 445–454 (2015)

    Article  Google Scholar 

  11. A. Navajas, I. Campo, A. Moral, J. Echave, O. Sanz, M. Montes, J.A. Odriozola, G. Arzamendi, L.M. Gandía, Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel 211, 173–181 (2018)

    Article  CAS  Google Scholar 

  12. J.C. Villegas, Part I. Manganese oxide containing layered double hydroxides materials: Synthesis and characterization. Part II. Manganese oxide octahedral molecular sieves (OMS-2): Synthesis, particle size control, characterization, and catalytic applications, University of Connecticut, 2006

    Google Scholar 

  13. V. Volli, M.K. Purkait, Preparation and characterization of hydrotalcite-like materials from flyash for transesterification. Clean Techn. Environ. Policy 18(2), 529–540 (2016)

    Article  CAS  Google Scholar 

  14. L.L. Myint, M.M. El-Halwagi, Process analysis and optimization of biodiesel production from soybean oil. Clean Techn. Environ. Policy 11(3), 263–276 (2009)

    Article  CAS  Google Scholar 

  15. J.H. Ng, H.K. Ng, S. Gan, Advances in biodiesel fuel for application in compression ignition engines. Clean Techn. Environ. Policy 12(5), 459–493 (2010)

    Article  CAS  Google Scholar 

  16. J.H. Ng, H.K. Ng, S. Gan, Recent trends in policies, socioeconomy and future directions of the biodiesel industry. Clean Techn. Environ. Policy 12(3), 213–238 (2010)

    Article  Google Scholar 

  17. M.K. Lam, K.T. Lee, A.R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 28(4), 500–518 (2010)

    Article  CAS  Google Scholar 

  18. S.H. Wang, Y.B. Wang, Y.M. Dai, J.M. Jehng, Preparation and characterization of hydrotalcite-like compounds containing transition metal as a solid base catalyst for the transesterification. Appl. Catal. A Gen. 439, 135–141 (2012)

    Article  Google Scholar 

  19. A. Gil, E. Arrieta, M.A. Vicente, S.A. Korili, Synthesis and CO2 adsorption properties of hydrotalcite-like compounds prepared from aluminum saline slag wastes. Chem. Eng. J. 334, 1341–1350 (2018)

    Article  CAS  Google Scholar 

  20. M.P. Dorado, F. Cruz, J.M. Palomar, F.J. Lopez, An approach to the economics of two vegetable oil-based biofuels in Spain. Renew. Energy 31(8), 1231–1237 (2006)

    Article  CAS  Google Scholar 

  21. A.B. Chhetri, K.C. Watts, M.R. Islam, Waste cooking oil as an alternate feedstock for biodiesel production. Energies 1(1), 3–18 (2008)

    Article  CAS  Google Scholar 

  22. A. Brito, M.E. Borges, M. Garín, A. Hernández, Biodiesel production from waste oil using Mg− Al layered double hydroxide catalysts. Energy Fuel 23(6), 2952–2958 (2009)

    Article  CAS  Google Scholar 

  23. M. del Remedio Hernandez, J.A. Reyes-Labarta, F.J. Valdes, New heterogeneous catalytic transesterification of vegetable and used frying oil. Ind. Eng. Chem. Res. 49(19), 9068–9076 (2010)

    Article  Google Scholar 

  24. A. Demirbas, Use of algae as biofuel sources. Energy Convers. Manag. 51(12), 2738–2749 (2010)

    Article  CAS  Google Scholar 

  25. L. Brennan, P. Owende, Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14(2), 557–577 (2010)

    Article  CAS  Google Scholar 

  26. T.K. Hari, Z. Yaakob, N.N. Binitha, Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sust. Energ. Rev. 42, 1234–1244 (2015)

    Article  Google Scholar 

  27. J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. 103(30), 11206–11210 (2006)

    Article  CAS  Google Scholar 

  28. A.L. Ahmad, N.M. Yasin, C.J.C. Derek, J.K. Lim, Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sust. Energ. Rev. 15(1), 584–593 (2011)

    Article  CAS  Google Scholar 

  29. M. Ayoub, A.Z. Abdullah, Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sust. Energ. Rev. 16(5), 2671–2686 (2012)

    Article  CAS  Google Scholar 

  30. Y.Y. Tye, K.T. Lee, W.N.W. Abdullah, C.P. Leh, Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects. Renew. Sust. Energ. Rev. 15(9), 4521–4536 (2011)

    Article  Google Scholar 

  31. A. Demirbas, Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 50(1), 14–34 (2009)

    Article  CAS  Google Scholar 

  32. J.M. Ogden, R.H. Williams, E.D. Larson, Societal lifecycle costs of cars with alternative fuels/engines. Energy Policy 32(1), 7–27 (2004)

    Article  Google Scholar 

  33. P.A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016)

    Article  Google Scholar 

  34. S. Mekhilef, S. Siga, R. Saidur, A review on palm oil biodiesel as a source of renewable fuel. Renew. Sust. Energ. Rev. 15(4), 1937–1949 (2011)

    Article  CAS  Google Scholar 

  35. M. Nolte, Commercial biodiesel production in South Africa: A preliminary economic feasibility study, Doctoral dissertation, University of Stellenbosch, Stellenbosch, 2007

    Google Scholar 

  36. A.K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 33(3), 233–271 (2007)

    Article  CAS  Google Scholar 

  37. M.K. Yesilyurt, C. Cesur, V. Aslan, Z. Yilbasi, The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Renew. Sustain. Energy Rev. 119, 109574 (2020)

    Article  CAS  Google Scholar 

  38. M.J. Pratas, S. Freitas, M.B. Oliveira, S.C. Monteiro, Á.S. Lima, J.A. Coutinho, Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. J. Chem. Eng. Data 56(5), 2175–2180 (2011)

    Article  CAS  Google Scholar 

  39. P. Cao, M.A. Dubé, A.Y. Tremblay, High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32(11), 1028–1036 (2008)

    Article  CAS  Google Scholar 

  40. B. Sajjadi, A.A.A. Raman, H. Arandiyan, A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sust. Energ. Rev. 63, 62–92 (2016)

    Article  CAS  Google Scholar 

  41. S.Y. No, Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renew. Sust. Energ. Rev. 15(1), 131–149 (2011)

    Article  CAS  Google Scholar 

  42. A.Z. Abdullah, B. Salamatinia, H. Mootabadi, S. Bhatia, Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil. Energy Policy 37(12), 5440–5448 (2009)

    Article  Google Scholar 

  43. A.S. Carlsson, Plant oils as feedstock alternatives to petroleum–a short survey of potential oil crop platforms. Biochimie 91(6), 665–670 (2009)

    Article  CAS  Google Scholar 

  44. H. Huo, M. Wang, C. Bloyd, V. Putsche, Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ. Sci. Technol. 43(3), 750–756 (2009)

    Article  CAS  Google Scholar 

  45. B.D. Solomon, Biofuels and sustainability. Ann. N. Y. Acad. Sci. 1185(1), 119–134 (2010)

    Article  Google Scholar 

  46. C.H. Foyer, K.H. Siddique, A.P. Tai, S. Anders, N. Fodor, F.L. Wong, N. Ludidi, M.A. Chapman, B.J. Ferguson, M.J. Considine, F. Zabel, Modelling predicts that soybean is poised to dominate crop production across Africa. Plant Cell Environ. 42(1), 373–385 (2019)

    Article  CAS  Google Scholar 

  47. G. Engelbrecht, S. Claassens, C. Mienie, H. Fourie, South Africa: An important soybean producer in sub-Saharan Africa and the quest for managing nematode pests of the crop. Agriculture 10(6), 242 (2020)

    Article  CAS  Google Scholar 

  48. K. Muroyama, R. Atsumi, A. Andoh, Effect of pretreatment on lactic acid fermentation of bean curd refuse with simultaneous saccharification, in Studies in Surface Science and Catalysis, (Elsevier, Amsterdam, 2006), pp. 133–136

    Google Scholar 

  49. K. Muroyama, T. Mochizuki, T. Wakamura, Methane fermentation of bean curd refuse. J. Biosci. Bioeng. 91(2), 208–212 (2001)

    Article  CAS  Google Scholar 

  50. F. Cuadros, F. López-Rodríguez, A. Ruiz-Celma, F. Rubiales, A. González-González, Recycling, reuse and energetic valuation of meat industry wastes in Extremadura (Spain). Resour. Conserv. Recycl. 55(4), 393–399 (2011)

    Article  Google Scholar 

  51. A. Redondo-Cuenca, M.J. Villanueva-Suárez, I. Mateos-Aparicio, Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 108(3), 1099–1105 (2008)

    Article  CAS  Google Scholar 

  52. S.P. Singh, D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sust. Energ. Rev. 14(1), 200–216 (2010)

    Article  CAS  Google Scholar 

  53. M. Balat, Fuel characteristics and the use of biodiesel as a transportation fuel. Energy Sources, Part A 28(9), 855–864 (2006)

    Article  CAS  Google Scholar 

  54. B.R. Moser, Biodiesel production, properties, and feedstocks, in Biofuels, (Springer, New York, 2011), pp. 285–347

    Chapter  Google Scholar 

  55. U. Rashid, F. Anwar, Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy Fuel 22(2), 1306–1312 (2008)

    Article  CAS  Google Scholar 

  56. V.I.E. Ajiwe, A.E. Obika, African pear seed oil: Potential alternative source to diesel oil. Energy Fuel 14(1), 112–116 (2000)

    Article  CAS  Google Scholar 

  57. H.Y. Zhang, M.A. Hanna, Y. Ali, L. Nan, Yellow nut-sedge (Cyperus esculentus L.) tuber oil as a fuel. Ind. Crop. Prod. 5(3), 177–181 (1996)

    Article  CAS  Google Scholar 

  58. P. Schinas, G. Karavalakis, C. Davaris, G. Anastopoulos, D. Karonis, F. Zannikos, S. Stournas, E. Lois, Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass Bioenergy 33(1), 44–49 (2009)

    Article  CAS  Google Scholar 

  59. I.C.F. Dos Santos, S.H.V. De Carvalho, J.I. Solleti, W.F. de La Salles, K.T.D.S. de La, S.M.P. Meneghetti, Studies of Terminalia catappa L. oil: Characterization and biodiesel production. Bioresour. Technol. 99(14), 6545–6549 (2008)

    Article  Google Scholar 

  60. A. Mariod, S. Klupsch, I.H. Hussein, B. Ondruschka, Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energy Fuel 20(5), 2249–2252 (2006)

    Article  CAS  Google Scholar 

  61. M. Balat, H. Balat, Progress in biodiesel processing. Appl. Energy 87(6), 1815–1835 (2010)

    Article  CAS  Google Scholar 

  62. O.D. Hebbal, K.V. Reddy, K. Rajagopal, Performance characteristics of a diesel engine with deccan hemp oil. Fuel 85(14–15), 2187–2194 (2006)

    Article  CAS  Google Scholar 

  63. H. Shao, L. Chu, Resource evaluation of typical energy plants and possible functional zone planning in China. Biomass Bioenergy 32(4), 283–288 (2008)

    Google Scholar 

  64. U. Rashid, F. Anwar, B.R. Moser, G. Knothe, Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 99(17), 8175–8179 (2008)

    Article  CAS  Google Scholar 

  65. J. Kansedo, K.T. Lee, S. Bhatia, Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production. Fuel 88(6), 1148–1150 (2009)

    Article  CAS  Google Scholar 

  66. Y.C. Sharma, B. Singh, An ideal feedstock, kusum (Schleichera trijuga) for preparation of biodiesel: Optimization of parameters. Fuel 89(7), 1470–1474 (2010)

    Article  CAS  Google Scholar 

  67. P.K. Devan, N.V. Mahalakshmi, Performance, emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine. Fuel 88(5), 861–867 (2009)

    Article  CAS  Google Scholar 

  68. G. Knothe, S.C. Cermak, R.L. Evangelista, Cuphea oil as source of biodiesel with improved fuel properties caused by high content of methyl decanoate. Energy Fuel 23(3), 1743–1747 (2009)

    Article  CAS  Google Scholar 

  69. B.P. Chapagain, Y. Yehoshua, Z. Wiesman, Desert date (Balanites aegyptiaca) as an arid lands sustainable bioresource for biodiesel. Bioresour. Technol. 100(3), 1221–1226 (2009)

    Article  CAS  Google Scholar 

  70. P.N. Giannelos, S. Sxizas, E. Lois, F. Zannikos, G. Anastopoulos, Physical, chemical and fuel related properties of tomato seed oil for evaluating its direct use in diesel engines. Ind. Crop. Prod. 22(3), 193–199 (2005)

    Article  CAS  Google Scholar 

  71. M.G. Kulkarni, A.K. Dalai, Waste cooking oil an economical source for biodiesel: A review. Ind. Eng. Chem. Res. 45(9), 2901–2913 (2006)

    Article  CAS  Google Scholar 

  72. C.C. Enweremadu, M.M. Mbarawa, Technical aspects of production and analysis of biodiesel from used cooking oil—A review. Renew. Sust. Energ. Rev. 13(9), 2205–2224 (2009)

    Article  CAS  Google Scholar 

  73. M.J. Haas, Improving the economics of biodiesel production through the use of low value lipids as feedstocks: Vegetable oil soapstock. Fuel Process. Technol. 86(10), 1087–1096 (2005)

    Article  CAS  Google Scholar 

  74. S. Çaynak, M. Gürü, A. Biçer, A. Keskin, Y. Içingür, Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive. Fuel 88(3), 534–538 (2009)

    Article  Google Scholar 

  75. Y. Chisti, Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)

    Article  CAS  Google Scholar 

  76. R. Harun, M. Singh, G.M. Forde, M.K. Danquah, Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energ. Rev. 14(3), 1037–1047 (2010)

    Article  CAS  Google Scholar 

  77. G. Huang, F. Chen, D. Wei, X. Zhang, G. Chen, Biodiesel production by microalgal biotechnology. Appl. Energy 87(1), 38–46 (2010)

    Article  CAS  Google Scholar 

  78. F. Ma, M.A. Hanna, Biodiesel production: A review. Bioresour. Technol. 70(1), 1–15 (1999)

    Article  CAS  Google Scholar 

  79. C.W. Purnomo, C. Salim, H. Hinode, Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Microporous Mesoporous Mater. 162, 6 (2012)

    Article  CAS  Google Scholar 

  80. M. Wdowin, M. Franus, R. Panek, L. Badura, W. Franus, The conversion technology of fly ash into zeolites. Clean Techn. Environ. Policy 16(6), 1217–1223 (2014)

    Article  CAS  Google Scholar 

  81. Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112(7), 4124–4155 (2012)

    Article  CAS  Google Scholar 

  82. K.T. Chen, J.X. Wang, Y.M. Dai, P.H. Wang, C.Y. Liou, C.W. Nien, J.S. Wu, C.C. Chen, Rice husk ash as a catalyst precursor for biodiesel production. J. Taiwan Inst. Chem. Eng. 44(4), 622–629 (2013)

    Article  CAS  Google Scholar 

  83. K. Yan, X. Xie, J. Li, X. Wang, Z. Wang, Preparation, characterization, and catalytical application of Mg coal hydrotalcite-like compounds. J. Nat. Gas Chem. 16(4), 371–376 (2007)

    Article  CAS  Google Scholar 

  84. K. Hosni, E. Srasra, Simplified synthesis of layered double hydroxide using a natural source of magnesium. Appl. Clay Sci. 43(3–4), 415–419 (2009)

    Article  CAS  Google Scholar 

  85. P. Kunecki, R. Panek, M. Wdowin, W. Franus, Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. Int. J. Miner. Process. 166, 69–78 (2017)

    Article  CAS  Google Scholar 

  86. P. Kunecki, R. Panek, A. Koteja, W. Franus, Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres. Microporous Mesoporous Mater. 266, 102–108 (2018)

    Article  CAS  Google Scholar 

  87. G.N. Muriithi, L.F. Petrik, W.M. Gitari, F.J. Doucet, Synthesis and characterization of hydrotalcite from South African Coal fly ash. Powder Technol. 312, 299–309 (2017)

    Article  CAS  Google Scholar 

  88. T. Wajima, Synthesis of hydrotalcite from bittern, and its removal abilities of phosphate and nitrate. Int. J. Chem. Eng. Appl. 6(4), 228 (2015)

    CAS  Google Scholar 

  89. Y. Kuwahara, T. Ohmichi, T. Kamegawa, K. Mori, H. Yamashita, A novel conversion process for waste slag: Synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities. J. Mater. Chem. 20(24), 5052–5062 (2010)

    Article  CAS  Google Scholar 

  90. R. Galindo, A. López-Delgado, I. Padilla, M. Yates, Synthesis and characterisation of hydrotalcites produced by an aluminium hazardous waste: A comparison between the use of ammonia and the use of triethanolamine. Appl. Clay Sci. 115, 115–123 (2015)

    Article  CAS  Google Scholar 

  91. R. Galindo, I. Padilla, R. Sánchez-Hernández, J.I. Robla, G. Monrós, A. López-Delgado, Production of added-value materials from a hazardous waste in the aluminium tertiary industry: Synergistic effect between hydrotalcites and glasses. J. Environ. Chem. Eng. 3(4), 2552–2559 (2015)

    Article  CAS  Google Scholar 

  92. P.L. Linda, D.O. Okanigbe, A.P.I. Popoola, O.M. Popoola, Characterization of density separated mullite rich tailings from a secondary copper resource, a potential reinforcement material for development of an enhanced thermally conductive and wear resistant ti-6al-4v matrix composite, in The proceedings of the 60th International Conference of Metallurgist, Canada, 2021

    Google Scholar 

  93. D.O. Okanigbe, Production of copper and copper oxide nano-particles from leach solution of low grade copper smelter dust, 2019

    Google Scholar 

  94. F. Bakhtiari, Synthesis and characterization of tenorite (CuO) nanoparticles from smelting furnace dust (SFD). J. Min. Metall. Sect. B. 49(1), 21–21 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ogochukwu Okanigbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O., Van Der Merwe, S.R. (2023). Preparation and Characterization of Hydrotalcite-Derived Material from Mullite-Rich Tailings (I): Transesterification of Used Cooking Oil to Biodiesel. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_11

Download citation

Publish with us

Policies and ethics