Skip to main content

Resource Recovery and Recycling from Waste Metal Dust (I): Waste Iron Dust and Waste Aluminum Dust

  • Chapter
  • First Online:
Resource Recovery and Recycling from Waste Metal Dust

Abstract

The following conclusions can be drawn from a comparison of several waste iron dust (WID) and waste aluminum dust (WAD) characterization results: The materials are made of fine particles, measuring approximately ˂5.00 μm for WID and 1.34–20.00 μm for WAD. They are frequently spherical in shape and typically exist as oxides. Most notably, the characterization reports highlight substantial metal concentrations, which classify this waste as both a profitable by-product and a potentially harmful pollutant. However, due to the lack of mineral resources, all of these data suggest that direct stabilization/solidification strategies for disposal or recirculation were not the most efficient approaches to manage these waste metal dusts (WID, WAD). Therefore, from both an economic and environmental point of view, resource recovery and recycling from these waste metal dusts is a sustainable strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Habashi, Principles of Extractive Metallurgy: Pyrometallurgy (Routledge, Abingdon, 2017)

    Book  Google Scholar 

  2. L. Lu, J. Pan, D. Zhu, Quality requirements of iron ore for iron production, in Iron Ore, (Woodhead Publishing, Oxford, 2015), pp. 475–504

    Chapter  Google Scholar 

  3. L. Brückner, J. Frank, T. Elwert, Industrial recycling of lithium-ion batteries—A critical review of metallurgical process routes. Metals 10(8), 1107 (2020)

    Article  Google Scholar 

  4. J. Li, B. Ban, Y. Li, X. Bai, T. Zhang, J. Chen, Removal of impurities from metallurgical grade silicon during Ga-Si solvent refining. Silicon 9(1), 77–83 (2017)

    Article  CAS  Google Scholar 

  5. S. Esfahani, M. Barati, Purification of metallurgical silicon using iron as an impurity getter part I: Growth and separation of Si. Met. Mater. Int. 17(5), 823–829 (2011)

    Article  CAS  Google Scholar 

  6. F. Huang, Q. Lu, M. Wu, L. Zhao, Purification of metallurgical-grade silicon by Sn-Si solvent refining with different tin content. Silicon, 14, 1–11 (2022)

    Google Scholar 

  7. M. Cavallini, Thermodynamics applied to iron smelting techniques. Appl. Phys. A 113(4), 1049–1053 (2013)

    Article  CAS  Google Scholar 

  8. K. Murari, R. Siddique, K.K. Jain, Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste Manag. 17(1), 13–26 (2015)

    Article  CAS  Google Scholar 

  9. G.A. Flores, C. Risopatron, J. Pease, Processing of complex materials in the copper industry: Challenges and opportunities ahead. JOM 72(10), 3447–3461 (2020)

    Article  CAS  Google Scholar 

  10. E.E. Okafor, Early Iron Smelting in Nsukka-Nigeria: Information from Slags and Residues (Doctoral dissertation, University of Sheffield, 1992)

    Google Scholar 

  11. C.R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, T. Van Gerven, Recovery of rare earths and major metals from bauxite residue (red mud) by alkali roasting, smelting, and leaching. J. Sustain. Metall. 3(2), 393–404 (2017)

    Article  Google Scholar 

  12. M. Shamsuddin, H.Y. Sohn, Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy—A review: Part 1. Sulfide roasting and smelting. JOM 71(9), 3253–3265 (2019)

    Article  CAS  Google Scholar 

  13. X.H. Chen, X. Tang, Z.D. Wang, X.D. Hui, M. Li, Y.W. Wang, Manufacturing process and microstructure of copper-coated aluminum wires. Int. J. Miner. Metall. Mater. 22(2), 190–196 (2015)

    Article  CAS  Google Scholar 

  14. J.P. Tavener, Development of a standard platinum resistance thermometer for use up to the copper point. Int. J. Thermophys. 36(8), 2027–2035 (2015)

    Article  CAS  Google Scholar 

  15. S.A. Oglezneva, V.Y. Bulanov, Y.V. Kontsevoi, I.E. Ignat’ev, Production of nickel and iron nanopowders by hydrogen reduction from salts. Russ. Metall. (Met.) 2012(7), 654–658 (2012)

    Article  Google Scholar 

  16. K.T. Jacob, C.B. Alcock, The oxygen potential of the systems Fe+ FeCr2O4+ Cr2O3 and Fe+ FeV2O4+ V2O3 in the temperature range 750–1600 C. Metall. Trans. B 6(2), 215–221 (1975)

    Article  Google Scholar 

  17. S. Hasani, M. Panjepour, M. Shamanian, The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 78(3), 179–195 (2012)

    Article  CAS  Google Scholar 

  18. V.P. Itkin, C.B. Alcock, The Ca-Pb (calcium-lead) system. J. Phase Equilib. 13(2), 162–169 (1992)

    Article  CAS  Google Scholar 

  19. C. Guminski, The melting and boiling points of mercury (I-Ig). J. Chem. Thermodyn. 4, 603 (1972)

    Google Scholar 

  20. Z. Han, Z. Guo, Y. Zhang, X. Xiao, Z. Xu, Y. Sun, Pyrolysis characteristics of biomass impregnated with cadmium, copper and lead: Influence and distribution. Waste Biomass Valoriz. 9(7), 1223–1230 (2018)

    Article  CAS  Google Scholar 

  21. C. Wang, B. Lei, P. Jiang, X. Xu, G. Mi, Numerical and experimental investigation of vacuum-assisted laser welding for DP590 galvanized steel lap joint without prescribed gap. Int. J. Adv. Manuf. Technol. 94(9), 4177–4185 (2018)

    Article  Google Scholar 

  22. P. Kumar, A. Kumar, R. Kumar, Phytoremediation and Nanoremediation, in New Frontiers of Nanomaterials in Environmental Science, (Springer, Singapore, 2021), pp. 281–297

    Chapter  Google Scholar 

  23. R.H. Hanewald, W.A. Munson, D.L. Schweyer, Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO. Min. Metall. Explor. 9(4), 169–173 (1992)

    CAS  Google Scholar 

  24. J. Banhart, Manufacturing routes for metallic foams. JOM 52(12), 22–27 (2000)

    Article  CAS  Google Scholar 

  25. Z. Wang, Z. Cui, L. Liu, Q. Ma, X. Xu, Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: Effects of arsenic species. Chemosphere 154, 161–170 (2016)

    Article  CAS  Google Scholar 

  26. G. Kim, I. Sohn, Selective metal cation concentration during the solidification of stainless steel EAF dust and slag mixtures from high temperatures for increased Cr recovery. J. Hazard. Mater. 359, 174–185 (2018)

    Article  CAS  Google Scholar 

  27. I.F. Kurunov, The direct production of iron and alternatives to the blast furnace in iron metallurgy for the 21st century. Metallurgist 54(5), 335–342 (2010)

    Article  CAS  Google Scholar 

  28. J. Rieger, J. Schenk, Residual processing in the European steel industry: A technological overview. J. Sustain. Metall. 5(3), 295–309 (2019)

    Article  Google Scholar 

  29. T. Sofilić, A. Rastovčan-Mioč, Š. Cerjan-Stefanović, V. Novosel-Radović, M. Jenko, Characterization of steel mill electric-arc furnace dust. J. Hazard. Mater. 109(1–3), 59–70 (2004)

    Article  Google Scholar 

  30. C.L. Li, M.S. Tsai, Mechanism of spinel ferrite dust formation in electric arc furnace steelmaking. ISIJ Int. 33(2), 284–290 (1993)

    Article  CAS  Google Scholar 

  31. P.J. Nolasco-Sobrinho, D.C.R. Espinosa, J.A.S. Tenório, Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries. Ironmak. Steelmak. 30(1), 11–17 (2003)

    Article  CAS  Google Scholar 

  32. G. Laforest, J. Duchesne, Characterization and leachability of electric arc furnace dust made from remelting of stainless steel. J. Hazard. Mater. 135(1–3), 156–164 (2006)

    Article  CAS  Google Scholar 

  33. M.T. Tang, J. Peng, B. Peng, D. Yu, C.B. Tang, Thermal solidification of stainless steelmaking dust. Trans. Nonferrous Metals Soc. China 18(1), 202–206 (2008)

    Article  CAS  Google Scholar 

  34. G. Ma, A.M. Garbers-Craig, Stabilisation of Cr (VI) in stainless steel plant dust through sintering using silica-rich clay. J. Hazard. Mater. 169(1–3), 210–216 (2009)

    Article  CAS  Google Scholar 

  35. L. Wu, N.J. Themelis, The flash reduction of electric arc furnace dusts. JOM 44(1), 35–39 (1992)

    Article  CAS  Google Scholar 

  36. C. Takano, F.L. Cavallante, D.M. dos Santos, M.B. Mourão, Recovery of Cr, Ni and Fe from dust generated in stainless steelmaking. Miner. Process. Extr. Metall. 114(4), 201–206 (2005)

    Article  Google Scholar 

  37. Z. Huaiwei, H. Xin, An overview for the utilization of wastes from stainless steel industries. Resour. Conserv. Recycl. 55(8), 745–754 (2011)

    Article  Google Scholar 

  38. F. Škvára, F. Kaštánek, I. Pavelková, O. Šolcová, Y. Maléterová, P. Schneider, Solidification of waste steel foundry dust with Portland cement. J. Hazard. Mater. 89(1), 67–81 (2002)

    Article  Google Scholar 

  39. P. Rocabois, E. Lectard, J.C. Huber, F. Patisson, Thermodynamic assessment of the oxide phase in the Fe–Zn–O system-application to dust formation in electric arc furnace. In Proceedings of the 10th International IUPAC Conference on High Temperature Materials Chemistry, Julich, Germany, 10–14 April 2000; pp. 1–12.

    Google Scholar 

  40. H. Zhang, J. Dong, H. Xiong, Z. Wang, Y. Lu, Investigation on cooperative desulfurization efficiency for bearing carbon stainless steel dust briquettes chromium and nickel recovery process. J. Alloys Compd. 699, 408–414 (2017)

    Article  CAS  Google Scholar 

  41. S. Ri, M. Chu, Separation of metal nugget from self-reduced product of coal composite stainless steel dust briquette. ISIJ Int. 55(8), 1565–1572 (2015)

    Article  CAS  Google Scholar 

  42. S.S. Jung, G.B. Kim, I. Sohn, Understanding the solidification of stainless steel slag and dust mixtures. J. Am. Ceram. Soc. 100(8), 3771–3783 (2017)

    Article  CAS  Google Scholar 

  43. A.J.B. Dutra, P.R.P. Paiva, L.M. Tavares, Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng. 19(5), 478–485 (2006)

    Article  CAS  Google Scholar 

  44. B. Lindblom, C. Samuelsson, G. Ye, Fine-particle characterization—An important recycling tool. JOM 54(12), 35–38 (2002)

    Article  CAS  Google Scholar 

  45. N. Menad, J.N. Ayala, F. Garcia-Carcedo, E. Ruiz-Ayúcar, A. Hernandez, Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust. Waste Manag. 23(6), 483–491 (2003)

    Article  CAS  Google Scholar 

  46. S. Kelebek, S. Yörük, B. Davis, Characterization of basic oxygen furnace dust and zinc removal by acid leaching. Miner. Eng. 17(2), 285–291 (2004)

    Article  CAS  Google Scholar 

  47. J. Geldenhuis, A.W. Home, in 85th Steelmaking Conference Proceedings, Iron and Steel Society, Nashville TN, 661–668 (2002).

    Google Scholar 

  48. E. Ordoñez, H.A. Colorado, Additive manufacturing via the direct ink writing technique of kaolinite-based clay with electric arc furnace steel dust (EAF dust), in Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, (Springer, Cham, 2020), pp. 307–315

    Chapter  Google Scholar 

  49. M.F. Gándara, Aluminium: The metal of choice. Mater. Tehnol. 47(3), 261–265 (2013)

    Google Scholar 

  50. B. Wang, K. Xu, Y. Wang, Using sodium D-gluconate to suppress hydrogen production in wet aluminium waste dust collection systems. J. Hazard. Mater. 397, 122780 (2020)

    Article  CAS  Google Scholar 

  51. M. Bertram, S. Ramkumar, H. Rechberger, G. Rombach, C. Bayliss, K.J. Martchek, D.B. Müller, G. Liu, A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour. Conserv. Recycl. 125, 48–69 (2017)

    Article  Google Scholar 

  52. R. Galindo, I. Padilla, O. Rodríguez, R. Sánchez-Hernández, S. López-Andrés, A. López-Delgado, Characterization of solid wastes from aluminum tertiary sector: The current state of spanish industry. J. Miner. Mater. Charact. Eng. 3(2), 55–64 (2015)

    Google Scholar 

  53. C. Directive, 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control. Off. J. L 257(10), 10 (1996)

    Google Scholar 

  54. M. Nifuku, S. Koyanaka, H. Ohya, C. Barre, M. Hatori, S. Fujiwara, S. Horiguchi, I. Sochet, Ignitability characteristics of aluminium and magnesium dusts that are generated during the shredding of post-consumer wastes. J. Loss Prev. Process Ind. 20(4–6), 322–329 (2007)

    Article  CAS  Google Scholar 

  55. Y. Liu, B.S. Leong, Z.T. Hu, E.H. Yang, Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Constr. Build. Mater. 148, 140–147 (2017)

    Article  CAS  Google Scholar 

  56. D. Eliche-Quesada, S. Ruiz-Molina, L. Pérez-Villarejo, E. Castro, P.J. Sánchez-Soto, Dust filter of secondary aluminium industry as raw material of geopolymer foams. J. Build. Eng. 32, 101656 (2020)

    Article  Google Scholar 

  57. L. Marmo, D. Cavallero, M.L. Debernardi, Aluminium dust explosion risk analysis in metal workings. J. Loss Prev. Process Ind. 17(6), 449–465 (2004)

    Article  Google Scholar 

  58. R. Malviya, R. Chaudhary, Factors affecting hazardous waste solidification/stabilization: A review. J. Hazard. Mater. 137(1), 267–276 (2006)

    Article  CAS  Google Scholar 

  59. R.B. Moussa, C. Proust, M. Guessasma, K. Saleh, J. Fortin, Physical mechanisms involved into the flame propagation process through aluminum dust-air clouds: A review. J. Loss Prev. Process Ind. 45, 9–28 (2017)

    Article  Google Scholar 

  60. E. David, J. Kopac, Aluminum recovery as a product with high added value using aluminum hazardous waste. J. Hazard. Mater. 261, 316–324 (2013)

    Article  CAS  Google Scholar 

  61. N. Kongkajun, B. Cherdhirunkorn, W. Borwornkiatkaew, P. Chakartnarodom, Utilization of aluminium buffing dust as a raw material for the production of mullite. J. Met. Mater. Miner. 29(3), 71–75 (2019)

    CAS  Google Scholar 

Download references

Acknowledgments

The author will want to appreciate the Council for scientific and industrial research, Pretoria, South Africa and Tshwane University of Technology, Pretoria, South Africa, for the financial support. The author additionally acknowledges the facilities provided by Gravity concentrator Africa (PTY), Randburg, South Africa; Vaal University of Technology, Vanderbijlpark, South Africa; and University of Pretoria, Pretoria, South Africa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanigbe, D.O. (2023). Resource Recovery and Recycling from Waste Metal Dust (I): Waste Iron Dust and Waste Aluminum Dust. In: Ogochukwu Okanigbe, D., Popoola, A.P. (eds) Resource Recovery and Recycling from Waste Metal Dust. Springer, Cham. https://doi.org/10.1007/978-3-031-22492-8_1

Download citation

Publish with us

Policies and ethics