Skip to main content

Circadian Regulation of Sleep

  • Chapter
  • First Online:
Sleep and Clocks in Aging and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 18))

Abstract

Among the circadian clock-controlled downstream processes and activities, the sleep–wake cycle ranks at the top as it displays the most overt daily changes. While the molecular genetic mechanism underlying the circadian clock has been largely elucidated, our understanding of sleep regulation, to some degree, remains ambiguous. It was posited that a circadian drive promotes sleep and wakefulness in a time-specific manner, while a homeostatic drive facilitates sleep. In this chapter, we focus on circadian roles in sleep, with a particular attention to the roles of circadian clock genes in sleep regulation. We also discuss the effects of circadian misalignment and sleep disorders on aging. It is emphasized that the neural and genetic pathways that link circadian input signals to the sleep output should be investigated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham U, Saleh M, Kramer A (2013) Odor is a time cue for circadian behavior. J Biol Rhythms 28:26–37

    Google Scholar 

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Google Scholar 

  • Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD, Skene DJ, Von Schantz M (2010) Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 33:695–701

    Google Scholar 

  • Ashbrook LH, Krystal AD, Fu YH, Ptacek LJ (2020) Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacology 45:45–54

    Google Scholar 

  • Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483

    Google Scholar 

  • Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536

    Google Scholar 

  • Baggs JE, Price TS, Ditacchio L, Panda S, Fitzgerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7:e52

    Google Scholar 

  • Banks S, Dinges DF (2007) Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 3:519–528

    Google Scholar 

  • Bass JT (2017) The circadian clock system’s influence in health and disease. Genome Med 9:94

    Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Google Scholar 

  • Binks H, Vincent GE, Gupta C, Irwin C, Khalesi S (2020) Effects of diet on sleep: a narrative review. Nutrients 12

    Google Scholar 

  • Blum ID, Bell B, Wu MN (2018) Time for bed: genetic mechanisms mediating the circadian regulation of sleep. Trends Genet 34:379–388

    Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    Google Scholar 

  • Borbely A (2022) The two-process model of sleep regulation: beginnings and outlook. J Sleep Res e13598

    Google Scholar 

  • Borges CR, Poyares D, Piovezan R, Nitrini R, Brucki S (2019) Alzheimer’s disease and sleep disturbances: a review. Arq Neuropsiquiatr 77:815–824

    Google Scholar 

  • Brown SA, Azzi A (2013) Peripheral circadian oscillators in mammals. Handb Exp Pharmacol 45–66

    Google Scholar 

  • Brown TM, Colwell CS, Waschek JA, Piggins HD (2007) Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. J Neurophysiol 97:2553–2558

    Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Google Scholar 

  • Carroll JE, Prather AA (2021) Sleep and biological aging: a short review. Curr Opin Endocr Metab Res 18:159–164

    Google Scholar 

  • Carroll JE, Ross KM, Horvath S, Okun M, Hobel C, Rentscher KE, Coussons-Read M, Schetter CD (2021) Postpartum sleep loss and accelerated epigenetic aging. Sleep Health 7:362–367

    Google Scholar 

  • Cassone VM, Speh JC, Card JP, Moore RY (1988) Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J Biol Rhythms 3:71–91

    Google Scholar 

  • Chan NY, Au CT, Li SX, Wing YK (2022) Sleep complaints among school children. Sleep Med Clin 17:53–65

    Google Scholar 

  • Chang AM, Aeschbach D, Duffy JF, Czeisler CA (2015) Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A 112:1232–1237

    Google Scholar 

  • Collins B, Pierre-Ferrer S, Muheim C, Lukacsovich D, Cai Y, Spinnler A, Herrera CG, Wen S, Winterer J, Belle MDC, Piggins HD, Hastings M, Loudon A, Yan J, Foldy C, Adamantidis A, Brown SA (2020) Circadian VIPergic neurons of the suprachiasmatic nuclei sculpt the sleep-wake cycle. Neuron 108:486-499 e5

    Google Scholar 

  • Colwell CS (2011) Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12:553–569

    Google Scholar 

  • Curtis BJ, Ashbrook LH, Young T, Finn LA, Fu YH, Ptacek LJ, Jones CR (2019) Extreme morning chronotypes are often familial and not exceedingly rare: the estimated prevalence of advanced sleep phase, familial advanced sleep phase, and advanced sleep-wake phase disorder in a sleep clinic population. Sleep 42

    Google Scholar 

  • Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477

    Google Scholar 

  • Debruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545

    Google Scholar 

  • Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15–27

    Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    Google Scholar 

  • Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516(Pt 2):611–627

    Google Scholar 

  • Dijk DJ, Duffy JF, Czeisler CA (2001) Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases. Sleep 24:565–577

    Google Scholar 

  • Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, Mcknight SL (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383

    Google Scholar 

  • Eban-Rothschild A, Giardino WJ, De Lecea L (2017) To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 44:132–138

    Google Scholar 

  • Falup-Pecurariu C, Diaconu S, Tint D, Falup-Pecurariu O (2021) Neurobiology of sleep (review). Exp Ther Med 21:272

    Google Scholar 

  • Farajnia S, Michel S, Deboer T, Vanderleest HT, Houben T, Rohling JH, Ramkisoensing A, Yasenkov R, Meijer JH (2012) Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci 32:5891–5899

    Google Scholar 

  • Fatemeh G, Sajjad M, Niloufar R, Neda S, Leila S, Khadijeh M (2022) Effect of melatonin supplementation on sleep quality: a systematic review and meta-analysis of randomized controlled trials. J Neurol 269:205–216

    Google Scholar 

  • Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M (2000) The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 20:617–625

    Google Scholar 

  • Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R, O’hara BF, Mcknight SL (2006) NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci U S A 103:7118–7123

    Google Scholar 

  • Gandhi AV, Mosser EA, Oikonomou G, Prober DA (2015) Melatonin is required for the circadian regulation of sleep. Neuron 85:1193–1199

    Google Scholar 

  • Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M, Scott K, Diaz-Arrastia R, Mcknight SL (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230

    Google Scholar 

  • Garfield V (2019) The association between body mass index (BMI) and sleep duration: where are we after nearly two decades of epidemiological research? Int J Environ Res Public Health 16

    Google Scholar 

  • Gentry NW, Ashbrook LH, Fu YH, Ptacek LJ (2021) Human circadian variations. J Clin Invest 131

    Google Scholar 

  • Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, De La Iglesia HO, Kilduff TS (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci U S A 105:10227–10232

    Google Scholar 

  • Gompf HS, Anaclet C (2020) The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol 15:143–151

    Google Scholar 

  • Gong H, Mcginty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556:935–946

    Google Scholar 

  • Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403

    Google Scholar 

  • Gulia KK, Kumar VM (2018) Sleep disorders in the elderly: a growing challenge. Psychogeriatrics 18:155–165

    Google Scholar 

  • Hafner M, Stepanek M, Taylor J, Troxel WM, Van Stolk C (2017) Why sleep matters—the economic costs of insufficient sleep: a cross-country comparative analysis. Rand Health Q 6:11

    Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78:7124–7128

    Google Scholar 

  • Hasan S, Van Der Veen DR, Winsky-Sommerer R, Dijk DJ, Archer SN (2011) Altered sleep and behavioral activity phenotypes in PER3-deficient mice. Am J Physiol Regul Integr Comp Physiol 301:R1821–R1830

    Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Google Scholar 

  • He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL Jr, Rossner MJ, Nishino S, Fu YH (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870

    Google Scholar 

  • Hirano A, Shi G, Jones CR, Lipzen A, Pennacchio LA, Xu Y, Hallows WC, Mcmahon T, Yamazaki M, Ptacek LJ, Fu YH (2016) A cryptochrome 2 mutation yields advanced sleep phase in humans. Elife 5

    Google Scholar 

  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844

    Google Scholar 

  • Hood S, Amir S (2017) The aging clock: circadian rhythms and later life. J Clin Invest 127:437–446

    Google Scholar 

  • Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30:247–256

    Google Scholar 

  • Huang YL, Liu RY, Wang QS, Van Someren EJ, Xu H, Zhou JN (2002) Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav 76:597–603

    Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38

    Google Scholar 

  • Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    Google Scholar 

  • Kalinchuk AV, Mccarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116:260–272

    Google Scholar 

  • Kamdar BB, Tergas AI, Mateen FJ, Bhayani NH, Oh J (2013) Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 138:291–301

    Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Google Scholar 

  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873

    Google Scholar 

  • Kondratova AA, Kondratov RV (2012) The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13:325–335

    Google Scholar 

  • Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16:1099–1106

    Google Scholar 

  • Kubota A, Inouye ST, Kawamura H (1981) Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat. Neurosci Lett 27:303–308

    Google Scholar 

  • Kurien P, Hsu PK, Leon J, Wu D, Mcmahon T, Shi G, Xu Y, Lipzen A, Pennacchio LA, Jones CR, Fu YH, Ptacek LJ (2019) TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci U S A 116:12045–12053

    Google Scholar 

  • Lancel M, Van Riezen H, Glatt A (1991) Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat. Brain Res 548:206–214

    Google Scholar 

  • Landolt HP, Retey JV, Tonz K, Gottselig JM, Khatami R, Buckelmuller I, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29:1933–1939

    Google Scholar 

  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    Google Scholar 

  • Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB (2019) Adenosine and sleep. Handb Exp Pharmacol 253:359–381

    Google Scholar 

  • Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M (2015) Neuromedin S-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85:1086–1102

    Google Scholar 

  • Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG, Jilek A, Siegel JM, Zhou QY (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26:11615–11623

    Google Scholar 

  • Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, De Lecea L (2022) Hyperexcitable arousal circuits drive sleep instability during aging. Science 375:eabh3021

    Google Scholar 

  • Liochev SI (2015) Which is the most significant cause of aging? Antioxidants (basel) 4:793–810

    Google Scholar 

  • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762–6771

    Google Scholar 

  • Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20:3830–3842

    Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21:4864–4874

    Google Scholar 

  • Manoogian ENC, Panda S (2017) Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 39:59–67

    Google Scholar 

  • Maywood ES, Reddy AB, Wong GK, O’neill JS, O’brien JA, Mcmahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605

    Google Scholar 

  • Meerlo P, Havekes R, Steiger A (2015) Chronically restricted or disrupted sleep as a causal factor in the development of depression. Curr Top Behav Neurosci 25:459–481

    Google Scholar 

  • Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34:483–490

    Google Scholar 

  • Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T (2015) Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103–1116

    Google Scholar 

  • Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6:217–233

    Google Scholar 

  • Miyamoto H, Nakamaru-Ogiso E, Hamada K, Hensch TK (2012) Serotonergic integration of circadian clock and ultradian sleep-wake cycles. J Neurosci 32:14794–14803

    Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    Google Scholar 

  • Morin LP (2007) SCN organization reconsidered. J Biol Rhythms 22:3–13

    Google Scholar 

  • Morin LP (2013) Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243:4–20

    Google Scholar 

  • Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, Panda S (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359

    Google Scholar 

  • Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, Block GD (2011) Age-related decline in circadian output. J Neurosci 31:10201–10205

    Google Scholar 

  • Nassan M, Videnovic A (2022) Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 18:7–24

    Google Scholar 

  • Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    Google Scholar 

  • Nygard M, Palomba M (2006) The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence? Chronobiol Int 23:427–435

    Google Scholar 

  • Nygard M, Hill RH, Wikstrom MA, Kristensson K (2005) Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res Bull 65:149–154

    Google Scholar 

  • Oyetakin-White P, Suggs A, Koo B, Matsui MS, Yarosh D, Cooper KD, Baron ED (2015) Does poor sleep quality affect skin ageing? Clin Exp Dermatol 40:17–22

    Google Scholar 

  • Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, Campbell SS, Young MW (2017) Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169:203-215 e13

    Google Scholar 

  • Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI (2014) A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep 37:1327–1336

    Google Scholar 

  • Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M (2020) Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369

    Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, Mccarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Google Scholar 

  • Portas CM, Thakkar M, Rainnie DG, Greene RW, Mccarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225–235

    Google Scholar 

  • Proper KI, Van De Langenberg D, Rodenburg W, Vermeulen RCH, Van Der Beek AJ, Van Steeg H, Van Kerkhof LWM (2016) The relationship between shift work and metabolic risk factors: a systematic review of longitudinal studies. Am J Prev Med 50:e147–e157

    Google Scholar 

  • Rajput V, Bromley SM (1999) Chronic insomnia: a practical review. Am Fam Physician 60:1431–1438; discussion 1441–1442

    Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Google Scholar 

  • Riera CE, Merkwirth C, De Magalhaes Filho CD, Dillin A (2016) Signaling networks determining life span. Annu Rev Biochem 85:35–64

    Google Scholar 

  • Rijo-Ferreira F, Takahashi JS (2019) Genomics of circadian rhythms in health and disease. Genome Med 11:82

    Google Scholar 

  • Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689

    Google Scholar 

  • Roozendaal B, Van Gool WA, Swaab DF, Hoogendijk JE, Mirmiran M (1987) Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res 409:259–264

    Google Scholar 

  • Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J, Eichele G, Taneja R, Nave KA (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS ONE 3:e2762

    Google Scholar 

  • Sack RL, Brandes RW, Kendall AR, Lewy AJ (2000) Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med 343:1070–1077

    Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Google Scholar 

  • Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, Brenner C, Masri S, Benitah SA, Sassone-Corsi P (2017) Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170:664-677 e11

    Google Scholar 

  • Satoh S, Matsumura H, Suzuki F, Hayaishi O (1996) Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci U S A 93:5980–5984

    Google Scholar 

  • Scammell TE, Arrigoni E, Lipton JO (2017) Neural circuitry of wakefulness and sleep. Neuron 93:747–765

    Google Scholar 

  • Sheward WJ, Naylor E, Knowles-Barley S, Armstrong JD, Brooker GA, Seckl JR, Turek FW, Holmes MC, Zee PC, Harmar AJ (2010) Circadian control of mouse heart rate and blood pressure by the suprachiasmatic nuclei: behavioral effects are more significant than direct outputs. PLoS ONE 5:e9783

    Google Scholar 

  • Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR (2004) Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287:R47-57

    Google Scholar 

  • Shochat T, Loredo J, Ancoli-Israel S (2001) Sleep disorders in the elderly. Curr Treat Options Neurol 3:19–36

    Google Scholar 

  • Song B, Zhu JC (2021) Mechanisms of the rapid effects of ketamine on depression and sleep disturbances: a narrative review. Front Pharmacol 12:782457

    Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Google Scholar 

  • Stoynev AG, Ikonomov OC, Usunoff KG (1982) Feeding pattern and light-dark variations in water intake and renal excretion after suprachiasmatic nuclei lesions in rats. Physiol Behav 29:35–40

    Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179

    Google Scholar 

  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Google Scholar 

  • Tractenberg RE, Singer CM, Kaye JA (2005) Symptoms of sleep disturbance in persons with Alzheimer’s disease and normal elderly. J Sleep Res 14:177–185

    Google Scholar 

  • Trost Bobic T, Secic A, Zavoreo I, Matijevic V, Filipovic B, Kolak Z, Basic Kes V, Ciliga D, Sajkovic D (2016) The impact of sleep deprivation on the brain. Acta Clin Croat 55:469–473

    Google Scholar 

  • Troynikov O, Watson CG, Nawaz N (2018) Sleep environments and sleep physiology: a review. J Therm Biol 78:192–203

    Google Scholar 

  • Van Der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, De Wit J, Verkerk A, Eker AP, Van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630

    Google Scholar 

  • Vanini G, Torterolo P (2021) Sleep-wake neurobiology. Adv Exp Med Biol 1297:65–82

    Google Scholar 

  • Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, Von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    Google Scholar 

  • Viswanathan N, Davis FC (1995) Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Res 686:10–16

    Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, Mcdonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725

    Google Scholar 

  • Vujovic N, Gooley JJ, Jhou TC, Saper CB (2015) Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol 523:2714–2737

    Google Scholar 

  • Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, Janszky I, Mrkobrada M, Parraga G, Hackam DG (2012) Shift work and vascular events: systematic review and meta-analysis. BMJ 345:e4800

    Google Scholar 

  • Wang H (2018) Perfect timing: a Nobel prize in physiology or medicine for circadian clocks. Sci Bull 63:398–401

    Google Scholar 

  • Wang YQ, Liu WY, Li L, Qu WM, Huang ZL (2021) Neural circuitry underlying REM sleep: a review of the literature and current concepts. Prog Neurobiol 204:102106

    Google Scholar 

  • Weber F, Dan Y (2016) Circuit-based interrogation of sleep control. Nature 538:51–59

    Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Google Scholar 

  • West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA (2017) Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun 8:417

    Google Scholar 

  • Wisor JP, O’hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    Google Scholar 

  • Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S, Sancar A, Franken P, Lein ES, Kilduff TS (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28:7193–7201

    Google Scholar 

  • Wolkove N, Elkholy O, Baltzan M, Palayew M (2007) Sleep and aging: 1. Sleep disorders commonly found in older people. CMAJ 176:1299–1304

    Google Scholar 

  • Wyse CA, Coogan AN (2010) Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 1337:21–31

    Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Google Scholar 

  • Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptacek LJ (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59–70

    Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Google Scholar 

  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224

    Google Scholar 

  • Zhang L, Hirano A, Hsu PK, Jones CR, Sakai N, Okuro M, Mcmahon T, Yamazaki M, Xu Y, Saigoh N, Saigoh K, Lin ST, Kaasik K, Nishino S, Ptacek LJ, Fu YH (2016) A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc Natl Acad Sci U S A 113:E1536–E1544

    Google Scholar 

  • Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694

    Google Scholar 

  • Zhou QY, Cheng MY (2005) Prokineticin 2 and circadian clock output. FEBS J 272:5703–5709

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial support from the National Key R&D Program of China (2019YFA0802400), the National Natural Science Foundation of China (NSFC) (#31961133026, #81570171, #81701347, #31871187, and #81070455), Jiangsu Province Science Foundation for Youths (BK20170351), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang .

Editor information

Editors and Affiliations

Ethics declarations

The article does contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhong, Z., Ahmed, A., Wang, H. (2023). Circadian Regulation of Sleep. In: Jagota, A. (eds) Sleep and Clocks in Aging and Longevity. Healthy Ageing and Longevity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-22468-3_3

Download citation

Publish with us

Policies and ethics