Skip to main content

Melatonin: A Saga of Health and Longevity

  • Chapter
  • First Online:
Sleep and Clocks in Aging and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 18))

  • 780 Accesses

Abstract

Melatonin, an indoleamine neurohormone produced during night-time from the pineal gland, is the master regulator of the circadian timing system and activity-rest rhythm in human beings. Melatonin is exceptional in exhibiting diverse biological roles and physiological functions and is involved in the alleviation of stress and regulation of various significant functions such as geroprotection, immunomodulation, energy metabolism, and cardiovascular health. Through its receptors and as a consequence of its receptor-independent functions melatonin also plays an important role in diseased conditions by having anti-neurodegenerative, anti-diabetic, and anti-osteoarthritic effects. In recent years, melatonin has gained much attention due to its potent antioxidant and anti-inflammatory properties which forms the basis of most of its preventive/protective effects. The present chapter reviews some of the aspects related to the protective role of melatonin concerning various pathologic conditions and explores the utility of dietary supplementation of plant-based phytomelatonin for health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elhafeez HH, Hassan A, Hussein MT (2021) Melatonin administration provokes the activity of dendritic reticular cells in the seminal vesicle of Soay ram during the non-breeding season. Sci Rep 11(1):872

    Google Scholar 

  • Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS (2021) Importance of circadian timing for aging and longevity. Nat Commun 12(1):2862

    Google Scholar 

  • Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci CMLS 71(16):2997–3025

    Google Scholar 

  • Ahmad R, Haldar C (2012) Immune responses to lipopolysaccharide challenge in a tropical rodent (Funambulus pennanti): photoperiod entrainment and sex differences. Stress (Amsterdam, Netherlands) 15(2):172–183

    Google Scholar 

  • Akbulut KG, Gönül B, Akbulut H (2001) The effects of melatonin on humoral immune responses of young and aged rats. Immunol Invest 30(1):17–20

    Google Scholar 

  • Alonso-Vale MI, Anhê GF, Borges-Silva Cd, Andreotti S, Peres SB, Cipolla-Neto J, Lima FB (2004) Pinealectomy alters adipose tissue adaptability to fasting in rats. Metab Clin Exp 53(4):500–506

    Google Scholar 

  • Anghel L, Baroiu L, Popazu CR, PătraÈ™ D, Fotea S, Nechifor A, Ciubara A, Nechita L, MuÈ™at CL, Stefanopol IA, Tatu AL, Ciubara AB (2022) Benefits and adverse events of melatonin use in the elderly (review). Exp Ther Med 23(3):219

    Google Scholar 

  • Anisimov VN, Alimova IN, Baturin DA, Popovich IG, Zabezhinski MA, Rosenfeld SV, Manton KG, Semenchenko AV, Yashin AI (2003) Dose-dependent effect of melatonin on life span and spontaneous tumor incidence in female SHR mice. Exp Gerontol 38(4):449–461

    Google Scholar 

  • Arnao BA (2014) Phytomelatonin: discovery, content, and role in plants. Adv Botany Article ID 815769:1–11

    Google Scholar 

  • Aparicio-Soto M, Alarcón-de-la-Lastra C, Cárdeno A, Sánchez-Fidalgo S, Sanchez-Hidalgo M (2014) Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br J Pharmacol 171(1):134–144

    Google Scholar 

  • Armstrong SM, Redman JR (1991) Melatonin: a chronobiotic with anti-aging properties? Med Hypotheses 34(4):300–309

    Google Scholar 

  • Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function. Annu Rev Immunol 18:309–345

    Google Scholar 

  • Bae WJ, Park JS, Kang SK, Kwon IK, Kim EC (2018) Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts. Int J Mol Sci 19(6):1742

    Google Scholar 

  • Bailey CJ, Atkins TW, Matty AJ (1974) Melatonin inhibition of insulin secretion in the rat and mouse. Horm Res 5(1):21–28

    Google Scholar 

  • Baker J, Kimpinski K (2018) Role of melatonin in blood pressure regulation: an adjunct anti-hypertensive agent. Clin Exp Pharmacol Physiol 45(8):755–766

    Google Scholar 

  • Bazzano LA, Serdula MK, Liu S (2003) Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep 5(6):492–499

    Google Scholar 

  • Benarroch EE (2008) Suprachiasmatic nucleus and melatonin: reciprocal interactions and clinical correlations. Neurology 71(8):594–598

    Google Scholar 

  • Bherwani S, Saumya A, Sandhya A, Patel S, Ghotekar L (2016) The study of mineral status in type 2 diabetes mellitus with and without diabetic nephropathy. J Assoc Phys India 64(1):95

    Google Scholar 

  • Bitton R (2009) The economic burden of osteoarthritis. Am J Manag Care 15(8 Suppl):S230–S235

    Google Scholar 

  • Boutin JA, Ferry G (2019) Is there sufficient evidence that the melatonin binding site MT3 is quinone reductase 2? J Pharmacol Exp Ther 368(1):59–65

    Google Scholar 

  • Buonfiglio D, Parthimos R, Dantas R, Cerqueira Silva R, Gomes G, Andrade-Silva J, Ramos-Lobo A, Amaral FG, Matos R, Sinésio J Jr, Motta-Teixeira LC, Donato J Jr, Reiter RJ, Cipolla-Neto J (2018) Melatonin absence leads to long-term leptin resistance and overweight in rats. Front Endocrinol 9:122

    Google Scholar 

  • Büyükavci M, Ozdemir O, Buck S, Stout M, Ravindranath Y, SavaÅŸan S (2006) Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect. Fundam Clin Pharmacol 20(1):73–79

    Google Scholar 

  • Calvo JR, González-Yanes C, Maldonado MD (2013) The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 55(2):103–120

    Google Scholar 

  • Cao S, Shrestha S, Li J, Yu X, Chen J, Yan F, Ying G, Gu C, Wang L, Chen G (2017) Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 7(1):2417

    Google Scholar 

  • Carrasco C, Marchena AM, Holguín-Arévalo MS, Martín-Partido G, Rodríguez AB, Paredes SD, Pariente JA (2013) Anti-inflammatory effects of melatonin in a rat model of caerulein-induced acute pancreatitis. Cell Biochem Funct 31(7):585–590

    Google Scholar 

  • Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14(4):8638–8683

    Google Scholar 

  • Cernysiov V, Gerasimcik N, Mauricas M, Girkontaite I (2010) Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin. Int Immunol 22(1):25–34

    Google Scholar 

  • Chakir I, Dumont S, Pévet P, Ouarour A, Challet E, Vuillez P (2015) Pineal melatonin is a circadian time-giver for leptin rhythm in Syrian hamsters. Front Neurosci 9:190

    Google Scholar 

  • Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17(Suppl 1):76–83

    Google Scholar 

  • Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153(7):1448–1460

    Google Scholar 

  • Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    Google Scholar 

  • Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56(4):371–381

    Google Scholar 

  • Clapp-Lilly KL, Smith MA, Perry G, Harris PL, Zhu X, Duffy LK (2001) Melatonin acts as antioxidant and pro-oxidant in an organotypic slice culture model of Alzheimer’s disease. NeuroReport 12(6):1277–1280

    Google Scholar 

  • Colunga Biancatelli R, Berrill M, Mohammed YH, Marik PE (2020) Melatonin for the treatment of sepsis: the scientific rationale. J Thorac Dis 12(Suppl 1):S54–S65

    Google Scholar 

  • Córdoba-Moreno MO, de Souza E, Quiles CL, Dos Santos-Silva D, Kinker GS, Muxel SM, Markus RP, Fernandes PA (2020) Rhythmic expression of the melatonergic biosynthetic pathway and its differential modulation in vitro by LPS and IL10 in bone marrow and spleen. Sci Rep 10(1):4799

    Google Scholar 

  • Coryell PR, Diekman BO, Loeser RF (2021) Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 17(1):47–57

    Google Scholar 

  • Costa G (2010) Shift work and health: current problems and preventive actions. Saf Health Work 1(2):112–123

    Google Scholar 

  • Cuesta M, Boudreau P, Dubeau-Laramée G, Cermakian N, Boivin DB (2016) Simulated night shift disrupts circadian rhythms of immune functions in humans. J Immunol (Baltimore, Md.:1950) 196(6):2466–2475

    Google Scholar 

  • Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H (2020) Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. Eclinical Med 29–30:100587

    Google Scholar 

  • Currier NL, Sun LZ, Miller SC (2000) Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity. J Neuroimmunol 104(2):101–108

    Google Scholar 

  • Damiani AP, Strapazzon G, de Oliveira Sardinha TT, Rohr P, Gajski G, de Pinho RA, de Andrade VM (2020) Melatonin supplementation over different time periods until ageing modulates genotoxic parameters in mice. Mutagenesis 35(6):465–478

    Google Scholar 

  • Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol CB 16(21):R914–R916

    Google Scholar 

  • de Farias T, Cruz MM, de Sa R, Severi I, Perugini J, Senzacqua M, Cerutti SM, Giordano A, Cinti S, Alonso-Vale M (2019a) Melatonin supplementation decreases hypertrophic obesity and inflammation induced by high-fat diet in mice. Front Endocrinol 10:750

    Google Scholar 

  • del Gobbo V, Libri V, Villani N, Caliò R, Nisticò G (1989) Pinealectomy inhibits interleukin-2 production and natural killer activity in mice. Int J Immunopharmacol 11(5):567–573

    Google Scholar 

  • Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108(2):518–524

    Google Scholar 

  • Dhabhar, FS.; McEwen, BS (2001) Bidirectional effects of stress & glucocorticoid hormones on immune function: Possible explanations for paradoxical observations. In: Ader, R.; Felten, DL.; Cohen, N., editors. Psychoneuroimmunology. Third Edition. Academic Press; San Diego 301–338

    Google Scholar 

  • Diaz B, Blázquez E (1986) Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Hormone Metab Res = Hormon-und Stoffwechselforschung = Hormones et metabolism 18(4):225–229

    Google Scholar 

  • Dilman VM, Anisimov VN, Ostroumova MN, Khavinson VK, Morozov VG (1979) Increase in lifespan of rats following polypeptide pineal extract treatment. Experimentelle Pathologie 17(9):539–545

    Google Scholar 

  • Ding S, Lin N, Sheng X, Zhao Y, Su Y, Xu L, Tong R, Yan Y, Fu Y, He J, Gao Y, Yuan A, Ye L, Reiter RJ, Pu J (2019) Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα-dependent manner. J Pineal Res 67(2):e12581

    Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Piccolo R, Galasso G, Reiter RJ (2016) Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. Int J Cardiol 221:359–363

    Google Scholar 

  • Dragsted LO, Strube M, Larsen JC (1993) Cancer-protective factors in fruits and vegetables: biochemical and biological background. Pharmacol Toxicol 72(Suppl 1):116–135

    Google Scholar 

  • Drazen DL, Bilu D, Bilbo SD, Nelson RJ (2001) Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am J Physiol. Regul Integr Comp Physiol 280(5):R1476–R1482

    Google Scholar 

  • Domazetovic V (2017) Oxidative stress in bone remodeling: role of antioxidants. Clinical Cases in Mineral and Bone Metabolism 14(2):209. https://doi.org/10.11138/ccmbm/2017.14.1.209

  • Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, and Vincenzini MT (2017) Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 14(2):209–216

    Google Scholar 

  • Ebaid H, Bashandy S, Abdel-Mageed AM, Al-Tamimi J, Hassan I, Alhazza IM (2020) Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress. Nutr Metab 17:6

    Google Scholar 

  • El-Bakry HA, Ismail IA, Soliman SS (2018) Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways. J Photochem Photobiol B Biol 186:69–80

    Google Scholar 

  • Farias T, Paixao R, Cruz MM, de Sa R, Simão JJ, Antraco VJ, Alonso-Vale M (2019b) Melatonin supplementation attenuates the pro-inflammatory adipokines expression in visceral fat from obese mice induced by a high-fat diet. Cells 8(9):1041

    Google Scholar 

  • Favero G, Stacchiotti A, Castrezzati S, Bonomini F, Albanese M, Rezzani R, Rodella LF (2015) Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr Res (New York, NY) 35(10):891–900

    Google Scholar 

  • Fernández Vázquez G, Reiter RJ, Agil A (2018) Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control. J Pineal Res 64(4):e12472

    Google Scholar 

  • Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Google Scholar 

  • Fraschini F, Demartini G, Esposti D, Scaglione F (1998) Melatonin involvement in immunity and cancer. Biol Signals 7(1):61–72

    Google Scholar 

  • Froy O (2011) Circadian rhythms, aging, and life span in mammals. Physiology (Bethesda, Md) 26(4):225–235

    Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules (Basel, Switzerland) 23(3):530

    Google Scholar 

  • Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM (2021) Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology 10(4):253

    Google Scholar 

  • Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nature reviews. Immunology 5(3):243–251

    Google Scholar 

  • Gombert M, Codoñer-Franch P (2021) Melatonin in early nutrition: long-term effects on cardiovascular system. Int J Mol Sci 22(13):6809

    Google Scholar 

  • Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275(1–2):2–12

    Google Scholar 

  • Green EA, Black BK, Biaggioni I, Paranjape SY, Bagai K, Shibao C, Okoye MC, Dupont WD, Robertson D, Raj SR (2014) Melatonin reduces tachycardia in postural tachycardia syndrome: a randomized, crossover trial. Cardiovasc Ther 32(3):105–112

    Google Scholar 

  • Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr Top Med Chem 2(2):167–179

    Google Scholar 

  • Guo JY, Li F, Wen YB, Cui HX, Guo ML, Zhang L, Zhang YF, Guo YJ, Guo YX (2017) Melatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to attenuate osteoarthritis. Oncotarget 8(34):55967–55983

    Google Scholar 

  • Guo C, He J, Deng X, Wang D, Yuan G (2021) Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Arch Physiol Biochem 1–12. Advance online publication

    Google Scholar 

  • Gupta S, Haldar C (2013) Physiological crosstalk between melatonin and glucocorticoid receptor modulates T-cell mediated immune responses in a wild tropical rodent, Funambulus pennanti. J Steroid Biochem Mol Biol 134:23–36

    Google Scholar 

  • Gupta S, Haldar C, Ahmad R (2015) Photoperiodic regulation of nuclear melatonin receptor RORα in lymphoid organs of a tropical rodent Funambulus pennanti: role in seasonal oxidative stress. J Photochem Photobiol B 142:141–153

    Google Scholar 

  • Haldar C, Häussler D, Gupta D (1992) Effect of the pineal gland on circadian rhythmicity of colony forming units for granulocytes and macrophages (CFU-GM) from rat bone marrow cell cultures. J Pineal Res 12(2):79–83

    Google Scholar 

  • Hanzel CE, Pichet-Binette A, Pimentel LS, Iulita MF, Allard S, Ducatenzeiler A, Do Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35(10):2249–2262

    Google Scholar 

  • Hardeland R (2008) Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci CMLS 65(13):2001–2018

    Google Scholar 

  • Hardeland R (2009) Neuroprotection by radical avoidance: search for suitable agents. Molecules (Basel, Switzerland) 14(12):5054–5102

    Google Scholar 

  • Hardeland R (2017) Taxon- and site-specific melatonin catabolism. Molecules (Basel, Switzerland) 22(11):2015

    Google Scholar 

  • Hardeland R (2018) Melatonin and Inflammation-Story of a double-edged blade. J Pineal Res 65(4):e12525

    Google Scholar 

  • Hardeland R, Pandi-Perumal SR (2005) Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab 2:22

    Google Scholar 

  • Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog Neurobiol 127–128:46–63

    Google Scholar 

  • Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, Nimphius S (2020) Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact 20(3):347–371

    Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35(3):627–634

    Google Scholar 

  • He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J, Zhu K, Song Y, Ji P, Liu G (2016) Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int J Mol Sci 17(6):939

    Google Scholar 

  • Heo JI, Yoon DW, Yu JH, Kim NH, Yoo HJ, Seo JA, Kim SG, Choi KM, Baik SH, Choi DS, Kim NH (2018) Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha-2-HS-glycoprotein. J Pineal Res 65(2):e12493

    Google Scholar 

  • Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H, Mehrzadi S (2016) Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res 61(4):411–425

    Google Scholar 

  • Hou A, Chen P, Tang H, Meng H, Cheng X, Wang Y, Zhang Y, Peng J (2018) Cellular senescence in osteoarthritis and anti-aging strategies. Mech Ageing Dev 175:83–87

    Google Scholar 

  • Hriscu ML (2005) Modulatory factors of circadian phagocytic activity. Ann N Y Acad Sci 1057:403–430

    Google Scholar 

  • Huang K, Luo X, Zhong Y, Deng L, Feng J (2022) New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 10(1):e00904

    Google Scholar 

  • Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13(5):430–436

    Google Scholar 

  • Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang X, Oberly P, Minnigh MB, Poloyac SM, Carlisle DL, Friedlander RM (2020) Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Investig 130(6):3124–3136

    Google Scholar 

  • Johnson ZI, Shapiro IM, Risbud MV (2014) Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP. Matrix Biol J Int Soc Matrix Biol 40:10–16

    Google Scholar 

  • Karasek M, Reiter RJ (2002) Melatonin and aging. Neuro Endocrinol Lett 23(Suppl 1):14–16

    Google Scholar 

  • Kelestimur H, Sahin Z, Sandal S, Bulmus O, Ozdemir G, Yilmaz B (2006) Melatonin-related alterations in th1/th2 polarisation in primary thymocyte cultures of pinealectomized rats. Front Neuroendocrinol 27:103–110

    Google Scholar 

  • Kim YO, Pyo MY, Kim JH (2000) Influence of melatonin on immunotoxicity of lead. Int J Immunopharmacol 22(10):821–832

    Google Scholar 

  • Kim CH, Jeung EB, Yoo YM (2018) Combined fluid shear stress and melatonin enhances the ERK/Akt/mTOR signal in cilia-less MC3T3-E1 preosteoblast cells. Int J Mol Sci 19(10):2929

    Google Scholar 

  • Kose O, Arabaci T, Kara A, Yemenoglu H, Kermen E, Kizildag A, Gedikli S, Ozkanlar S (2016) Effects of melatonin on oxidative stress index and alveolar bone loss in diabetic rats with periodontitis. J Periodontol 87(5):e82–e90

    Google Scholar 

  • Kratschmar DV, Calabrese D, Walsh J, Lister A, Birk J, Appenzeller-Herzog C, Moulin P, Goldring CE, Odermatt A (2012) Suppression of the Nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PLoS ONE 7(5):e36774

    Google Scholar 

  • Kumar J, Verma R, Haldar C (2021) Melatonin ameliorates Bisphenol S induced testicular damages by modulating Nrf-2/HO-1 and SIRT-1/FOXO-1 expressions. Environ Toxicol 36(3):396–407

    Google Scholar 

  • Lardone PJ, Guerrero JM, Fernández-Santos JM, Rubio A, Martín-Lacave I, Carrillo-Vico A (2011) Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J Pineal Res 51(4):454–462

    Google Scholar 

  • LaRocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Ramesh P, Garcia MA, Link CD (2021) Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis 159:105493

    Google Scholar 

  • Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochem Biophys Acta 1862(4):576–591

    Google Scholar 

  • Li JH, Yu JP, Yu HG, Xu XM, Yu LL, Liu J, Luo HS (2005) Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis. Mediators Inflamm 2005(4):185–193

    Google Scholar 

  • Li T, Jiang S, Lu C, Yang W, Yang Z, Hu W, Xin Z, Yang Y (2019) Melatonin: another avenue for treating osteoporosis? J Pineal Res 66(2):e12548

    Google Scholar 

  • Li P, Xie C, Zhong J, Guo Z, Guo K, Tu Q (2021) Melatonin attenuates ox-LDL-induced endothelial dysfunction by reducing ER stress and inhibiting JNK/Mff signaling. Oxid Med Cell Longev 2021:5589612

    Google Scholar 

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    Google Scholar 

  • Lionaki E, Gkikas I, Daskalaki I, Ioannidi MK, Klapa MI, Tavernarakis N (2022) Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nat Commun 13(1):651

    Google Scholar 

  • Lissoni P, Vigorè L, Rescaldani R, Rovelli F, Brivio F, Giani L, Barni S, Tancini G, Ardizzoia A, Viganò MG (1995) Neuroimmunotherapy with low-dose subcutaneous interleukin-2 plus melatonin in AIDS patients with CD4 cell number below 200/mm3: a biological phase-II study. J Biol Regul Homeost Agents 9(4):155–158

    Google Scholar 

  • Lissoni P, Rovelli F, Brivio F, Brivio O, Fumagalli L (1998) Circadian secretions of IL-2, IL-12, IL-6 and IL-10 in relation to the light/dark rhythm of the pineal hormone melatonin in healthy humans. Nat Immun 16(1):1–5

    Google Scholar 

  • Liu R, Fu A, Hoffman AE, Zheng T, Zhu Y (2013) Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol 14:1

    Google Scholar 

  • Liu K, Yu W, Wei W, Zhang X, Tian Y, Sherif M, Liu X, Dong C, Wu W, Zhang L, Chen J (2019a) Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J Lipid Res 60(4):767–782

    Google Scholar 

  • Liu L, Labani N, Cecon E, Jockers R (2019b) Melatonin target proteins: too many or not enough? Front Endocrinol 10:791

    Google Scholar 

  • Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S, Sun C (2017) Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res 63(1). https://doi.org/10.1111/jpi.12414

  • Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64(6):1697–1707

    Google Scholar 

  • Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(7):412–420

    Google Scholar 

  • Lu KH, Lu PW, Lu EW, Tang CH, Su SC, Lin CW, Yang SF (2021) The potential remedy of melatonin on osteoarthritis. J Pineal Res 71(3):e12762

    Google Scholar 

  • Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F, Papa S (2009) ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radical Biol Med 46(3):339–351

    Google Scholar 

  • Luo J, Zhang Z, Sun H, Song J, Chen X, Huang J, Lin X, Zhou R (2020) Effect of melatonin on T/B cell activation and immune regulation in pinealectomy mice. Life Sci 242:117191

    Google Scholar 

  • Maestroni GJ, Conti A, Pierpaoli W (1986) Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol 13(1):19–30

    Google Scholar 

  • Maldonado MD, Moreno H, Calvo JR (2009) Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin Nutr (Edinburgh, Scotland) 28(2):188–191

    Google Scholar 

  • Maldonado MD, Mora-Santos M, Naji L, Carrascosa-Salmoral MP, Naranjo MC, Calvo JR (2010) Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacol Res 62(3):282–287

    Google Scholar 

  • Man K, Loudon A, Chawla A (2016) Immunity around the clock. Science (New York, NY) 354(6315):999–1003

    Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67(25):3023–3029

    Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Google Scholar 

  • Marseglia L, D’Angelo G, Manti S, Aversa S, Arrigo T, Reiter RJ, Gitto E (2015) Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci 16(1):1209–1220

    Google Scholar 

  • Marseglia L, Gitto E, Laschi E, Giordano M, Romeo C, Cannavò L, Toni AL, Buonocore G, Perrone S (2021) Antioxidant effect of melatonin in preterm newborns. Oxid Med Cell Longev 2021:6308255

    Google Scholar 

  • Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, Reiter RJ (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 165(1–2):139–149

    Google Scholar 

  • Milcu SM, Milcu I (1958) Uber ein hypoglykämisch wirkendes Hormon in der Zirbeldrüse [A pineal gland hormone of hypoglycemic action]. Die Medizinische 3(17):711–715

    Google Scholar 

  • Mistraletti G, Paroni R, Umbrello M, D’Amato L, Sabbatini G, Taverna M, Formenti P, Finati E, Favero G, Bonomini F, Rezzani R, Reiter RJ, Iapichino G (2017) Melatonin pharmacological blood levels increase total antioxidant capacity in critically Ill patients. Int J Mol Sci 18(4):759

    Google Scholar 

  • Morris CJ, Purvis TE, Hu K, Scheer FA (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci USA 113(10):E1402–E1411

    Google Scholar 

  • Motawi TK, Ahmed SA, Hamed A, M., El-Maraghy, S. A., and M Aziz, W. (2019) Melatonin and/or rowatinex attenuate streptozotocin-induced diabetic renal injury in rats. J Biomed Res 33(2):113–121

    Google Scholar 

  • Munmun F, Witt-Enderby PA (2021) Melatonin effects on bone: implications for use as a therapy for managing bone loss. J Pineal Res 71(1):e12749

    Google Scholar 

  • NaveenKumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS (2020) Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 69(3):e12676

    Google Scholar 

  • NaveenKumar SK, Hemshekhar M, Kemparaju K, Girish KS (2019) Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: protection by melatonin. Biochimica et biophysica acta. Mol Basis Dis 1865(9):2303–2316

    Google Scholar 

  • Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 50(2):171–182

    Google Scholar 

  • NeacÅŸu C (1988) Pineal-pancreas interaction: pineal hormone E5 action on insulin activity. Physiologie (bucarest) 25(3):119–127

    Google Scholar 

  • Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J Pineal Res 50(2):124–131

    Google Scholar 

  • Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P, DeGennaro LJ (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Investig 107(1):35–44

    Google Scholar 

  • Nogueira TC, Lellis-Santos C, Jesus DS, Taneda M, Rodrigues SC, Amaral FG, Lopes AM, Cipolla-Neto J, Bordin S, Anhê GF (2011) Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 152(4):1253–1263

    Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Google Scholar 

  • Oba S, Nakamura K, Sahashi Y, Hattori A, Nagata C (2008) Consumption of vegetables alters morning urinary 6-sulfatoxymelatonin concentration. J Pineal Res 45(1):17–23

    Google Scholar 

  • Oktem G, Uslu S, Vatansever SH, Aktug H, Yurtseven ME, Uysal A (2006) Evaluation of the relationship between inducible nitric oxide synthase (iNOS) activity and effects of melatonin in experimental osteoporosis in the rat. Surg Radiol Anatomy SRA 28(2):157–162

    Google Scholar 

  • Oliveira AC, Andreotti S, Sertie R, Campana AB, de Proença A, Vasconcelos RP, Oliveira KA, Coelho-de-Souza AN, Donato-Junior J, Lima FB (2018) Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats. Life Sci 199:158–166

    Google Scholar 

  • Ou TH, Tung YT, Yang TH, Chien YW (2019) Melatonin improves fatty liver syndrome by inhibiting the lipogenesis pathway in hamsters with high-fat diet-induced hyperlipidemia. Nutrients 11(4):748

    Google Scholar 

  • Owino S, Buonfiglio D, Tchio C, Tosini G (2019) Melatonin signaling a key regulator of glucose homeostasis and energy metabolism. Front Endocrinol 10:488

    Google Scholar 

  • Paatela E, Munson D, Kikyo N (2019) Circadian regulation in tissue regeneration. Int J Mol Sci 20(9):2263

    Google Scholar 

  • Pal CP, Singh P, Chaturvedi S, Pruthi KK, Vij A (2016) Epidemiology of knee osteoarthritis in India and related factors. Indian J Orthop 50(5):518–522

    Google Scholar 

  • Pan H, Wang H, Zhu L, Wang X, Cong Z, Sun K, Fan Y (2013) The involvement of Nrf2-ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol Res 35(1):71–78

    Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48(4):297–310

    Google Scholar 

  • Paredes SD, Barriga C, Reiter RJ, Rodríguez AB (2009) Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: Streptopelia risoria as a model. Int J Tryptophan Res IJTR 2:23–36

    Google Scholar 

  • Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35(22):7505–7513

    Google Scholar 

  • Pawlak J, Singh J, Lea RW, Skwarlo-Sonta K (2005) Effect of melatonin on phagocytic activity and intracellular free calcium concentration in testicular macrophages from normal and streptozotocin-induced diabetic rats. Mol Cell Biochem 275(1–2):207–213

    Google Scholar 

  • Penev PD, Kolker DE, Zee PC, Turek FW (1998) Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol 275(6):H2334–H2337

    Google Scholar 

  • Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009) Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radical Biol Med 47(7):969–974

    Google Scholar 

  • Pierpaoli W, Regelson W (1994) Pineal control of aging: effect of melatonin and pineal grafting on aging mice. Proc Natl Acad Sci USA 91(2):787–791

    Google Scholar 

  • Popović B, Velimirović M, Stojković T, Brajović G, De Luka SR, Milovanović I, Stefanović S, Nikolić D, Ristić-Djurović JL, Petronijević ND, Trbovich AM (2018) The influence of ageing on the extrapineal melatonin synthetic pathway. Exp Gerontol 110:151–157

    Google Scholar 

  • Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S (2020) Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 12:30

    Google Scholar 

  • Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, García IM, Cuello-Carrión FD, Fornés MW, Ferder L, Diez ER, Manucha W (2018) Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT1 reduction and Hsp70-VDR increase. J Pineal Res 65(4):e12513

    Google Scholar 

  • Price J, Zaidi AK, Bohensky J, Srinivas V, Shapiro IM, Ali H (2010) Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol 222(3):502–508

    Google Scholar 

  • Rastmanesh R (2011) Potential of melatonin to treat or prevent age-related macular degeneration through stimulation of telomerase activity. Med Hypotheses 76(1):79–85

    Google Scholar 

  • Rastogi S, Haldar C (2020) Role of melatonin and HSF-1\HSP-70 in modulating cold stress-induced immunosuppression in a tropical rodent- Funambulus pennanti. J Therm Biol 87:102456

    Google Scholar 

  • Recchioni R, Marcheselli F, Moroni F, Gáspár R, Damjanovich S, Pieri C (1998) Melatonin increases the intensity of respiratory burst and prevents l-selectin shedding in human neutrophils in vitro. Biochem Biophys Res Commun 252(1):20–24

    Google Scholar 

  • Reiter RJ, Manchester LC, Tan DX (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition (Burbank, Los Angeles County, Calif) 21(9):920–924

    Google Scholar 

  • Reiter RJ, Acuna-Castroviejo D, Tan DX (2007) Melatonin therapy in fibromyalgia. Curr Pain Headache Rep 11(5):339–342

    Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda, Md.) 29(5):325–333

    Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278

    Google Scholar 

  • Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci CMLS 74(21):3863–3881

    Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D (2018) melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 19(8):2439

    Google Scholar 

  • Reiter RJ, Ma Q, Sharma R (2020a) Melatonin in mitochondria: mitigating clear and present dangers. Physiology (Bethesda, Md) 35(2):86–95

    Google Scholar 

  • Reiter RJ, Rosales-Corral S, Sharma R (2020b) Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv Med Sci 65(2):394–402

    Google Scholar 

  • Reiter RJ, Sharma R, de Campos P, Zuccari DA, de Almeida Chuffa LG, Manucha W, Rodriguez C (2021) Melatonin synthesis in and uptake by mitochondria: implications for diseased cells with dysfunctional mitochondria. Future Med Chem 13(4):335–339

    Google Scholar 

  • Rellmann Y, Eidhof E, Dreier R (2021) Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 78:109880

    Google Scholar 

  • Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y (2017) Melatonin signaling in T cells: functions and applications. J Pineal Res 62(3). https://doi.org/10.1111/jpi.12394

  • Riboli E, Norat T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78(3 Suppl):559S-569S

    Google Scholar 

  • Rodella LF, Favero G, Foglio E, Rossini C, Castrezzati S, Lonati C, Rezzani R (2013) Vascular endothelial cells and dysfunctions: role of melatonin. Front Biosci (elite Ed) 5(1):119–129

    Google Scholar 

  • Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56(4):343–370

    Google Scholar 

  • Sahin E, DePinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13(6):397–404

    Google Scholar 

  • Sanchez S, Paredes SD, Sanchez CL, Barriga C, Reiter RJ, Rodriguez AB (2008) Tryptophan administration in rats enhances phagocytic function and reduces oxidative metabolism. Neuro Endocrinol Lett 29(6):1026–1032

    Google Scholar 

  • Santoro R, Marani M, Blandino G, Muti P, Strano S (2012) Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene 31(24):2931–2942

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89

    Google Scholar 

  • Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, Scherrer U, Duplain H (2009) Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology 150(12):5311–5317

    Google Scholar 

  • Satari M, Bahmani F, Reiner Z, Soleimani A, Aghadavod E, Kheiripour N, Asemi Z (2021) Metabolic and anti-inflammatory response to melatonin administration in patients with diabetic nephropathy. Iran J Kidney Dis 1(1):22–30

    Google Scholar 

  • Schmitz N, van der Werf YD, Lammers-van der Holst HM (2022) The Importance of sleep and circadian rhythms for vaccination success and susceptibility to viral infections. Clocks Sleep 4(1):66–79

    Google Scholar 

  • Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA (2010) Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 49(3):222–238

    Google Scholar 

  • She M, Deng X, Guo Z, Laudon M, Hu Z, Liao D, Hu X, Luo Y, Shen Q, Su Z, Yin W (2009) NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats. Pharmacol Res 59(4):248–253

    Google Scholar 

  • Shi S, Lei S, Tang C, Wang K, Xia Z (2019) Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci Rep 39(1):BSR20181614

    Google Scholar 

  • Simko F, Baka T, Paulis L, Reiter RJ (2016) Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 61(2):127–137

    Google Scholar 

  • Singh AK, Haldar C (2016) Melatonin modulates glucocorticoid receptor mediated inhibition of antioxidant response and apoptosis in peripheral blood mononuclear cells. Mol Cell Endocrinol 436:59–67

    Google Scholar 

  • Singh AK, Haldar C (2017) Supplementation of corn seed with regular diet modulates immune function and antioxidant status in Capra hircus. J Anim Physiol Anim Nutr 101(6):1205–1214

    Google Scholar 

  • Singh AK, Haldar C (2020) Seasonal cytokine production and combinatorial effect of recombinant cytokines and melatonin on peripheral blood mononuclear cells proliferation. Acta Sci Vet Sci 06–11

    Google Scholar 

  • Song RH, Tortorella MD, Malfait AM, Alston JT, Yang Z, Arner EC, Griggs DW (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 56(2):575–585

    Google Scholar 

  • Song YJ, Zhong CB, Wu W (2020) Cardioprotective effects of melatonin: focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother = Biomedecine and pharmacotherapie 128, 110260

    Google Scholar 

  • Steinhaus ME, Christ AB, Cross MB (2017) Total knee arthroplasty for knee osteoarthritis: support for a foregone conclusion? HSS J Musculoskelet J Hosp Spec Surg 13(2):207–210

    Google Scholar 

  • Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Friedlander RM (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114(38):E7997–E8006

    Google Scholar 

  • Suriagandhi V, Nachiappan V (2022) Protective effects of melatonin against obesity-induced by leptin resistance. Behav Brain Res 417:113598

    Google Scholar 

  • Takada K, Hirose J, Senba K, Yamabe S, Oike Y, Gotoh T, Mizuta H (2011) Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int J Exp Pathol 92(4):232–242

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9(3–4):137–159

    Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63(2):577–597

    Google Scholar 

  • Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54(2):127–138

    Google Scholar 

  • Tan DX, Manchester LC, Qin L, Reiter RJ (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci 17(12):2124

    Google Scholar 

  • Taniguchi N, Caramés B, Ronfani L, Ulmer U, Komiya S, Bianchi ME, Lotz M (2009) Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci USA 106(4):1181–1186

    Google Scholar 

  • Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P (2019) Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 10(4):317

    Google Scholar 

  • Thomas D, Kansara M (2006) Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem 98:757–769

    Google Scholar 

  • Tozawa T, Mishima K, Satoh K, Echizenya M, Shimizu T, Hishikawa Y (2003) Stability of sleep timing against the melatonin secretion rhythm with advancing age: clinical implications. J Clin Endocrinol Metab 88(10):4689–4695

    Google Scholar 

  • van der Helm-van Mil AH, van Someren EJ, van den Boom R, van Buchem MA, de Craen AJ, Blauw GJ (2003) No influence of melatonin on cerebral blood flow in humans. J Clin Endocrinol Metab 88(12):5989–5994

    Google Scholar 

  • van Tassel D, Roberts N, O’Neill S (1995) Melatonin from higher plants: isolation and identification of N-acetyl-5-methoxytryptamine. Plant Physiol 108–115

    Google Scholar 

  • van Tassel D, O’Neill S (1993) Melatonin: identification of a potential dark signal in plants, in Plant Physiology 102(1):659

    Google Scholar 

  • Vishwas DK, Mukherjee A, Haldar C, Dash D, Nayak MK (2013) Improvement of oxidative stress and immunity by melatonin: an age dependent study in golden hamster. Exp Gerontol 48(2):168–182

    Google Scholar 

  • Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    Google Scholar 

  • Wang Y, Zhang S, Ma Y, Xiang A, Sun H, Song J, Yang W, Li X, Xu H (2022) Melatonin protected against myocardial infarction injury in rats through a Sirt6-dependent antioxidant pathway. Adv Clin Exp Med Official Organ Wroclaw Med Univ 31(3):277–284

    Google Scholar 

  • Webster Marketon JI, Glaser R (2008) Stress hormones and immune function. Cell Immunol 252(1–2):16–26

    Google Scholar 

  • Wolden-Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141(2):487–497

    Google Scholar 

  • Wyse CA, Coogan AN, Selman C, Hazlerigg DG, Speakman JR (2010) Association between mammalian lifespan and circadian free-running period: the circadian resonance hypothesis revisited. Biol Let 6(5):696–698

    Google Scholar 

  • Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH, Chen YH, Zhang C, Zhao M, Xu DX, Song LH (2012) Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res 53(4):325–334

    Google Scholar 

  • Xia B, Chen D, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcified Tissue Int 95(6):495–505

    Google Scholar 

  • Xie Y, Lou D, Zhang D (2021) Melatonin alleviates age-associated endothelial injury of atherosclerosis via regulating telomere function. J Inflamm Res 14:6799–6812

    Google Scholar 

  • Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, Zhai Y (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62(4). https://doi.org/10.1111/jpi.12399

  • Yang W, Tang K, Wang Y, Zhang Y, Zan L (2017) Melatonin promotes triacylglycerol accumulation via MT2 receptor during differentiation in bovine intramuscular preadipocytes. Sci Rep 7(1):15080

    Google Scholar 

  • Yawoot N, Govitrapong P, Tocharus C, Tocharus J (2021) Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. BioFactors (Oxford, England) 47(1):41–58

    Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380

    Google Scholar 

  • Yin J, Li Y, Han H, Chen S, Gao J, Liu G, Wu X, Deng J, Yu Q, Huang X, Fang R, Li T, Reiter RJ, Zhang D, Zhu C, Zhu G, Ren W, Yin Y (2018) Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res 65(4):e12524

    Google Scholar 

  • Yoo YM, Jang SK, Kim GH, Park JY, Joo SS (2016) Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes. J Biomed Res 30(4):314–321

    Google Scholar 

  • Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, Zhang M, Zhang B, Jin Z, Yu S, Yang Y, Wang H (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep 7:41337

    Google Scholar 

  • Yuan H, Wu G, Zhai X, Lu B, Meng B, Chen J (2019) Melatonin and rapamycin attenuate isoflurane-induced cognitive impairment through inhibition of neuroinflammation by suppressing the mTOR signaling in the hippocampus of aged mice. Front Aging Neurosci 11:314

    Google Scholar 

  • Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57(2):131–146

    Google Scholar 

  • Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64(2):10

    Google Scholar 

  • Zhang Y, Lin J, Zhou X, Chen X, Chen AC, Pi B, Pan G, Pei M, Yang H, Liu T, He F (2019) Melatonin prevents osteoarthritis-induced cartilage degradation via targeting MicroRNA-140. Oxid Med Cell Longev 2019:9705929

    Google Scholar 

  • Zhao H, Wu QQ, Cao LF, Qing HY, Zhang C, Chen YH, Wang H, Liu RY, Xu DX (2014) Melatonin inhibits endoplasmic reticulum stress and epithelial-mesenchymal transition during bleomycin-induced pulmonary fibrosis in mice. PLoS ONE 9(5):e97266

    Google Scholar 

  • Zhao X, Li H, Wang L (2019) MicroRNA-107 regulates autophagy and apoptosis of osteoarthritis chondrocytes by targeting TRAF3. Int Immunopharmacol 71:181–187

    Google Scholar 

  • Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J (2018) Effects of melatonin on fatty liver disease: The role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res 64(1). https://doi.org/10.1111/jpi.12450

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided in form of Start-up research grant by the University Grants Commission (UGC), New Delhi and Institute of Eminence (IoE), Banaras Hindu University, Varanasi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandana Haldar .

Editor information

Editors and Affiliations

Ethics declarations

This article reviewed the published literature available in the domain with proper citations to the work of the original authors. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Singh, A.K., Haldar, C., Roy, A. (2023). Melatonin: A Saga of Health and Longevity. In: Jagota, A. (eds) Sleep and Clocks in Aging and Longevity. Healthy Ageing and Longevity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-22468-3_15

Download citation

Publish with us

Policies and ethics