Skip to main content

Sleep Hormone Melatonin, Inflammation and Aging

  • Chapter
  • First Online:
Sleep and Clocks in Aging and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 18))

  • 743 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 June 2023

    In the original version of the book following belated correction has been incorporated:

    Abstract and Keywords has been inserted for all the chapters and in chapter 13 Acknowledgement statement has been updated.

    The correction chapter and the book has been updated with the changes.

References

  • Adav SS, Wang Y (2021) Metabolomics signatures of aging: recent advances. Aging Dis 12:646–661

    Google Scholar 

  • Aguado J, D’adda Di Fagagna F, Wolvetang E (2020) Telomere transcription in ageing. Ageing Res Rev 62:101115

    Google Scholar 

  • Alarma-Estrany P, Crooke A, Mediero A, Peláez T, Pintor J (2008) Sympathetic nervous system modulates the ocular hypotensive action of MT2-melatonin receptors in normotensive rabbits. J Pineal Res 45:468–475

    Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Google Scholar 

  • Averina OV, Kovtun AS, Polyakova SI, Savilova AM, Rebrikov DV, Danilenko VN (2020) The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J Med Microbiol 69:558–571

    Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Google Scholar 

  • Balasubramanian P, Hall D, Subramanian M (2019) Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. Geroscience 41:13–24

    Google Scholar 

  • Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME (2020) The interplay between immunosenescence and age-related diseases. Semin Immunopathol 42:545–557

    Google Scholar 

  • Basta G (2008) Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis 196:9–21

    Google Scholar 

  • Bektas A, Schurman SH, Sen R, Ferrucci L (2018) Aging, inflammation and the environment. Exp Gerontol 105:10–18

    Google Scholar 

  • Blasiak J, Reiter RJ, Kaarniranta K (2016) Melatonin in retinal physiology and pathology: the case of age-related macular degeneration. Oxid Med Cell Longev 2016:6819736

    Google Scholar 

  • Bocheva G, Slominski RM, Janjetovic Z, Kim TK, Böhm M, Steinbrink K, Reiter RJ, Kleszczyński K, Slominski AT (2022) Protective role of melatonin and its metabolites in skin aging. Int J Mol Sci 23

    Google Scholar 

  • Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I, Coto-Montes A (2019) Therapeutic potential of melatonin related to its role as an autophagy regulator: a review. J Pineal Res 66:e12534

    Google Scholar 

  • Brazao V, Santello FH, Colato RP, Mazotti TT, Tazinafo LF, Toldo MPA, Do Vale GT, Tirapelli CR, Do Prado JC Jr (2017) Melatonin: antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection. J Pineal Res 63

    Google Scholar 

  • Bubenik GA, Konturek SJ (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62:13–19

    Google Scholar 

  • Cao X, Li W, Wang T, Ran D, Davalos V, Planas-Serra L, Pujol A, Esteller M, Wang X, Yu H (2022) Accelerated biological aging in COVID-19 patients. Nat Commun 13:2135

    Google Scholar 

  • Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, Pan H, Cui H, Long J, Wang J, Zheng Z (2020) Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res 8:10

    Google Scholar 

  • Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, Li T, Margolick JB, Pawelec G, Leng SX (2021a) Aging in COVID-19: vulnerability, immunity and intervention. Ageing Res Rev 65:101205

    Google Scholar 

  • Chen Z, Zhao C, Liu P, Huang H, Zhang S, Wang X (2021b) Anti-apoptosis and autophagy effects of melatonin protect rat chondrocytes against oxidative stress via regulation of AMPK/Foxo3 pathways. Cartilage 13:1041s–1053s

    Google Scholar 

  • Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY, Li MQ (2019) Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med 43:945–955

    Google Scholar 

  • Choi EY, Jin JY, Lee JY, Choi JI, Choi IS, Kim SJ (2011) Melatonin inhibits Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-6 in murine macrophages by suppressing NF-κB and STAT1 activity. J Pineal Res 50:197–206

    Google Scholar 

  • Cipolla-Neto J, Amaral FGD (2018) Melatonin as a hormone: new physiological and clinical insights. Endocr Rev 39:990–1028

    Google Scholar 

  • Correa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira I (2018) New phytochemicals as potential human anti-aging compounds: reality, promise, and challenges. Crit Rev Food Sci Nutr 58:942–957

    Google Scholar 

  • Cui Y, Yang M, Wang Y, Ren J, Lin P, Cui C, Song J, He Q, Hu H, Wang K, Sun Y (2021) Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J 35:e21485

    Google Scholar 

  • Cullum E, Dikiy S, Beilinson HA, Kane M, Veinbachs A, Beilinson VM, Denzin LK, Chervonsky A, Golovkina T (2020) Genetic control of neonatal immune tolerance to an exogenous retrovirus. J Virol 94

    Google Scholar 

  • Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485

    Google Scholar 

  • Doron I, Leonardi I, Iliev ID (2019) Profound mycobiome differences between segregated mouse colonies do not influence Th17 responses to a newly introduced gut fungal commensal. Fungal Genet Biol 127:45–49

    Google Scholar 

  • Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356:1026–1030

    Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257

    Google Scholar 

  • George PM, Wells AU, Jenkins RG (2020) Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med 8:807–815

    Google Scholar 

  • Ghosh TS, Shanahan F, O’toole PW (2022) The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol 1–20

    Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Google Scholar 

  • Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590

    Google Scholar 

  • Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166

    Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Google Scholar 

  • Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R (2018) CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 69:301–318

    Google Scholar 

  • He F, Wu XY, Zhang QZ, Li YK, Ye YY, Li P, Chen SA, Peng YY, Hardeland R, Xia YY (2021) Bacteriostatic potential of melatonin: therapeutic standing and mechanistic insights. Front Immunol 12

    Google Scholar 

  • He F, Liu Y, Li P, Wu X, Xia Y, Zhang D, Li N, Peng Y, Zhu G, Hardeland R, Reiter RJ, Ren W (2022) Melatonin inhibits gram-negative pathogens by targeting citrate synthase. Sci China Life Sci

    Google Scholar 

  • Helman A, Cangelosi AL, Davis JC, Pham Q, Rothman A, Faust AL, Straubhaar JR, Sabatini DM, Melton DA (2020) A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab 31:1004-1016.e1005

    Google Scholar 

  • Hohl TM, Skalski JH, Limon JJ, Sharma P, Gargus MD, Nguyen C, Tang J, Coelho AL, Hogaboam CM, Crother TR, Underhill DM (2018) Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog 14:e1007260

    Google Scholar 

  • Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341

    Google Scholar 

  • Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, Deng S, Ma X (2017). Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res 62

    Google Scholar 

  • Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang X, Oberly P, Minnigh MB, Poloyac SM, Carlisle DL, Friedlander RM (2020) Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 130:3124–3136

    Google Scholar 

  • Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS (2017) Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22(809–816):e804

    Google Scholar 

  • Jou MJ, Peng TI, Reiter RJ (2019) Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca(2+) stress by melatonin’s cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pineal Res 66:e12538

    Google Scholar 

  • Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, Van Der Burg SH, Verdegaal EM, Cascante M, Shlomi T, Gottlieb E, Peeper DS (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:109–112

    Google Scholar 

  • Kumazaki T, Yoshida A (1984) Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc Natl Acad Sci U S A 81:4193–4197

    Google Scholar 

  • Lawrence RE, Zoncu R (2019) The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol 21:133–142

    Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Google Scholar 

  • Li H, Zhai N, Wang Z, Song H, Yang Y, Cui A, Li T, Wang G, Niu J, Crispe IN, Su L, Tu Z (2018) Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 67:2035–2044

    Google Scholar 

  • Lian J, Yue Y, Yu W, Zhang Y (2020) Immunosenescence: a key player in cancer development. J Hematol Oncol 13:151

    Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Google Scholar 

  • Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X (2020) Melatonin and autophagy in aging-related neurodegenerative diseases. Int J Mol Sci 21

    Google Scholar 

  • Lv WJ, Liu C, Yu LZ, Zhou JH, Li Y, Xiong Y, Guo A, Chao LM, Qu Q, Wei GW, Tang XG, Yin YL, Guo SN (2020) Melatonin alleviates neuroinflammation and metabolic disorder in DSS-induced depression rats. Oxid Med Cell Longev 2020:1241894

    Google Scholar 

  • Ma J, Hong Y, Zheng N, Xie G, Lyu Y, Gu Y, Xi C, Chen L, Wu G, Li Y, Tao X, Zhong J, Huang Z, Wu W, Yuan L, Lin M, Lu X, Zhang W, Jia W, Sheng L, Li H (2020) Gut microbiota remodeling reverses aging-associated inflammation and dysregulation of systemic bile acid homeostasis in mice sex-specifically. Gut Microbes 11:1450–1474

    Google Scholar 

  • Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496

    Google Scholar 

  • Naveenkumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS (2020) Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 69:e12676

    Google Scholar 

  • Nishi EE, Almeida VR, Amaral FG, Simon KA, Futuro-Neto HA, Pontes RB, Cespedes JG, Campos RR, Bergamaschi CT (2019) Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension. Hypertens Res 42:1683–1691

    Google Scholar 

  • Nohara K, Mallampalli V, Nemkov T, Wirianto M, Yang J, Ye Y, Sun Y, Han L, Esser KA, Mileykovskaya E, D’alessandro A, Green CB, Takahashi JS, Dowhan W, Yoo SH, Chen Z (2019) Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun 10:3923

    Google Scholar 

  • Obayashi K, Saeki K, Kurumatani N (2014) Association between urinary 6-sulfatoxymelatonin excretion and arterial stiffness in the general elderly population: the HEIJO-KYO cohort. J Clin Endocrinol Metab 99:3233–3239

    Google Scholar 

  • Partridge L, Deelen J, Slagboom PE (2018) Facing up to the global challenges of ageing. Nature 561:45–56

    Google Scholar 

  • Pawelec G (2018) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9

    Google Scholar 

  • Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z (2015) SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11:1037–1051

    Google Scholar 

  • Purushothaman A, Sheeja AA, Janardanan D (2020) Hydroxyl radical scavenging activity of melatonin and its related indolamines. Free Radic Res 54:373–383

    Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B (2018) Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules 23

    Google Scholar 

  • Roenneberg T, Allebrandt Karla v, Merrow M, Vetter C (2013) Social jetlag and obesity. Curr Biol 23

    Google Scholar 

  • Santoro A, Bientinesi E, Monti D (2021) Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev 71:101422

    Google Scholar 

  • Sebastiani G, Gkouvatsos K, Pantopoulos K (2014) Chronic hepatitis C and liver fibrosis. World J Gastroenterol 20:11033–11053

    Google Scholar 

  • Shen YQ, Guerra-Librero A, Fernandez-Gil BI, Florido J, García-López S, Martinez-Ruiz L, Mendivil-Perez M, Soto-Mercado V, Acuña-Castroviejo D, Ortega-Arellano H, Carriel V, Diaz-Casado ME, Reiter RJ, Rusanova I, Nieto A, López LC, Escames G (2018) Combination of melatonin and rapamycin for head and neck cancer therapy: suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res 64

    Google Scholar 

  • Shetty AK, Kodali M, Upadhya R, Madhu LN (2018) Emerging anti-aging strategies—scientific basis and efficacy. Aging Dis 9:1165–1184

    Google Scholar 

  • Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, Eaton V, Seok R, Leiner IM, Pamer EG (2020) Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28:134-146.e134

    Google Scholar 

  • Soto-Gamez A, Demaria M (2017) Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 22:786–795

    Google Scholar 

  • Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666

    Google Scholar 

  • Suwazono Y, Kobayashi E, Okubo Y, Nogawa K, Kido T, Nakagawa H (2000) Renal effects of cadmium exposure in cadmium nonpolluted areas in Japan. Environ Res 84:44–55

    Google Scholar 

  • Swanson GR, Siskin J, Gorenz A, Shaikh M, Raeisi S, Fogg L, Forsyth C, Keshavarzian A (2020) Disrupted diurnal oscillation of gut-derived Short chain fatty acids in shift workers drinking alcohol: possible mechanism for loss of resiliency of intestinal barrier in disrupted circadian host. Transl Res 221:97–109

    Google Scholar 

  • Tamura H, Kawamoto M, Sato S, Tamura I, Maekawa R, Taketani T, Aasada H, Takaki E, Nakai A, Reiter RJ, Sugino N (2017) Long-term melatonin treatment delays ovarian aging. J Pineal Res 62

    Google Scholar 

  • Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, Takasaki A, Reiter RJ, Sugino N (2020) Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci 21

    Google Scholar 

  • Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Google Scholar 

  • Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4:623–632

    Google Scholar 

  • Verkhratsky A (2019) Astroglial calcium signaling in aging and Alzheimer’s disease. Cold Spring Harb Perspect Biol 11

    Google Scholar 

  • Viswanathan M, Hissa R, George JC (1986) Suppression of sympathetic nervous system by short photoperiod and melatonin in the Syrian hamster. Life Sci 38:73–79

    Google Scholar 

  • Wang B, Zhang L, Zhu SW, Zhang JD, Duan LP (2019a) Short chain fatty acids contribute to gut microbiota-induced promotion of colonic melatonin receptor expression. J Biol Regul Homeost Agents 33:763–771

    Google Scholar 

  • Wang T, Cao Y, Zheng Q, Tu J, Zhou W, He J, Zhong J, Chen Y, Wang J, Cai R, Zuo Y, Wei B, Fan Q, Yang J, Wu Y, Yi J, Li D, Liu M, Wang C, Zhou A, Li Y, Wu X, Yang W, Chin YE, Chen G, Cheng J (2019b) SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell 75:823-834.e825

    Google Scholar 

  • Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, Kentish S, Xie P, Morrison M, Wesselingh SL, Rogers GB, Licinio J (2016) Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry 21:797–805

    Google Scholar 

  • Wong SQ, Kumar AV, Mills J, Lapierre LR (2020) Autophagy in aging and longevity. Hum Genet 139:277–290

    Google Scholar 

  • Wurtman RJ, Axelrod J, Fischer JE (1964) Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143:1328–1329

    Google Scholar 

  • Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W (2019) Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 66:e12547

    Google Scholar 

  • Xia YY, Zhang QZ, Ye YY, Wu XY, He F, Peng YY, Yin YL, Ren WK (2022) Melatonergic signalling instructs transcriptional inhibition of IFNGR2 to lessen interleukin-1 beta-dependent inflammation. Clin Trans Med 12

    Google Scholar 

  • Xie Y, Lou D, Zhang D (2021) Melatonin alleviates age-associated endothelial injury of atherosclerosis via regulating telomere function. J Inflamm Res 14:6799–6812

    Google Scholar 

  • Yang L, Liu X, Song L, Su G, Di A, Bai C, Wei Z, Li G (2019) Inhibiting repressive epigenetic modification promotes telomere rejuvenation in somatic cell reprogramming. Faseb j 33:13982–13997

    Google Scholar 

  • Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A, Cui W (2019) CD4(+) T Cell help is required for the formation of a Cytolytic CD8(+) T cell subset that protects against chronic infection and cancer. Immunity 51:1028-1042.e1024

    Google Scholar 

  • Zhang L, Zhang Z, Wang J, Lv D, Zhu T, Wang F, Tian X, Yao Y, Ji P, Liu G (2019a) Melatonin regulates the activities of ovary and delays the fertility decline in female animals via MT1/AMPK pathway. J Pineal Res 66:e12550

    Google Scholar 

  • Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y, Fu Z (2019b) Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 66:e12542

    Google Scholar 

  • Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan AWH, Wei H, Yang X, Sung JJY, Yu J (2021) Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 70:761–774

    Google Scholar 

  • Zhao ZX, Yuan X, Cui YY, Liu J, Shen J, Jin BY, Feng BC, Zhai YJ, Zheng MQ, Kou GJ, Zhou RC, Li LX, Zuo XL, Li SY, Li YQ (2021) Melatonin mitigates oxazolone-induced colitis in microbiota-dependent manner. Front Immunol 12:783806

    Google Scholar 

  • Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 63

    Google Scholar 

  • Zimmermann P, Curtis N (2020) Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child

    Google Scholar 

  • Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen N, Lai CKC, Chen Z, Tso EYK, Fung KSC, Chan V, Ling L, Joynt G, Hui DSC, Chan FKL, Chan PKS, Ng SC (2020) Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159:944-955.e948

    Google Scholar 

Download references

Acknowledgements

Our profound admiration and respect go to researchers in this field and in our laboratories, for their dedication and hard work. We apologize to scientists whose work is in this field if their papers are not cited owing to space limitations. This work was supported by Fundamental Research Funds for the Central Universities (SWU-KQ22068), Chongqing graduate research and innovation project (CYS18075), and College Student Innovation and Entrepreneurship Training Program Practical Project (S202110635157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoyao Xia .

Editor information

Editors and Affiliations

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, Y., Wu, X., Yin, Z., Li, Y., He, F. (2023). Sleep Hormone Melatonin, Inflammation and Aging. In: Jagota, A. (eds) Sleep and Clocks in Aging and Longevity. Healthy Ageing and Longevity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-22468-3_13

Download citation

Publish with us

Policies and ethics