Skip to main content

Physik der Windparks

  • Chapter
  • First Online:
Windenergie Meteorologie
  • 819 Accesses

Zusammenfassung

Die Beurteilung der meteorologischen Bedingungen in Windparks bedarf einer besonderen Behandlung, da hier die Anströmung der meisten Anlagen im Parkinneren nicht mehr ungestört ist. Die von den windaufwärts stehenden Turbinen erzeugten Wirbel können die windabwärts stehenden Turbinen massiv beeinflussen. Eine spezielle räumliche Anordnung der Turbinen in kleineren Windparks in Bezug auf die mittlere Windrichtung kann dazu beitragen, die Nachlauf-Turbinen-Interaktionen zu minimieren. Bei größeren Windparks sind jedoch Nachlauf-Turbinen-Interaktionen im Parkinneren unvermeidlich, und das Verhältnis zwischen mittlerem Turbinenabstand und Rotordurchmesser wird zum Hauptparameter, der die Parkeffizienz bestimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Der Schubkoeffizient ist das Verhältnis zwischen der Widerstandskraft T und der dynamischen Kraft 0,5u20 D (Rotorfläche D). Die Widerstandskraft einer idealen Turbine ist gegeben durch T = 0,5u0 2A[4r(1 – r)] mit r = (u0u*h)/u0. u*h ist der Mittelwert von uh und u0. Wir haben u*h = u0 (1 – r). Somit ist CT = [4r(1 – r)]. Für uh = 0 ergibt sich u*h = 0,5u0, r = 0,5 und CT = 1. Für uh = u0 folgt u*h = u0, r = 0 und CT = 0. Der Ertrag ist P = Tu*h = 0,5u03 A[4r(1 – r)2 ] und der Ertragskoeffizient ist CP = [4r(1 – r)2 ]. Für die optimale Ausbeute an der Betz’schen Grenze ist r = 1/3 (berechnet aus ∂CP (r)/∂r = 0) und CT = 8/9 (Manwell et al. 2010)

Literatur

  • Barthelmie R.J., L.E. Jensen: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 13, 573–586 (2010)

    Article  Google Scholar 

  • Barthelmie, R.J., L. Folkerts, F.T. Ormel, P. Sanderhoff, P.J. Eecen, O. Stobbe, N.M. Nielsen: Offshore Wind Turbine Wakes Measured by Sodar. J. Atmos. Oceanogr. Technol. 20, 466–477 (2003)

    Article  Google Scholar 

  • Barthelmie, R.J., S. Pryor, S. Frandsen, S. Larsen: Analytical Modelling of Large Wind Farm Clusters. Poster, Proc. EAWE 2004 Delft (2004). (available from: http://www.risoe.dk/vea/storpark/Papers%20and%20posters/delft_013.pdf)

  • Barthelmie, R., Hansen O.F., Enevoldsen K., Højstrup J., Frandsen S., Pryor S., Larsen S.E., Motta M., and Sanderhoff P.: Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng. 127, 170–176 (2005)

    Article  Google Scholar 

  • Barthelmie, R., Frandsen, S.T., Rethore, P.E., Jensen, L.: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proc. Eur. Offshore Wind Conf. 2007, Berlin 4.-6.12.2007 (2007)

    Google Scholar 

  • BDEW: Analyse und Bewertung von Möglichkeiten zur Weiterentwicklung des Regelenergiemarktes Strom. Grobkonzept – final. BDEW, Berlin (2015)

    Google Scholar 

  • Boettcher, M., P. Hoffmann, H.-J. Lenhart, K.H. Schlünzen, R. Schoetter: Influence of large offshore wind farms on North German climate. Meteorol. Z., 24, 465–480 (2015)

    Article  Google Scholar 

  • Bossanyi, E.A., Maclean C., Whittle G.E., Dunn P.D., Lipman N.H., Musgrove P.J.: The Efficiency of Wind Turbine Clusters. Proc. Third Intern. Symp. Wind Energy Systems, Lyngby (DK), August 26–29, 1980, 401–416 (1980)

    Google Scholar 

  • Christiansen, M.B., Hasager, C.B.: Wake effects of large offshore wind farms identified from satellite SAR. Rem. Sens. Environ. 98, 251–268 (2005)

    Article  Google Scholar 

  • Crespo, A., Hernandez, J., Frandsen, S.: Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms. Wind Energy 2, 1–24 (1999)

    Article  Google Scholar 

  • Cutler, N., M. Kay, K. Jacka, T.S. Nielsen: Detecting, Categorizing and Forecasting Large Ramps in Wind Farm Power Output Using Meteorological Observations and WPPT. Wind Energy, 10, 453–470 (2007)

    Article  Google Scholar 

  • Cutululis, N.A., N.K. Detlefsen, P.E. Sørensen: Offshore wind power prediction in critical weather conditions. 10th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, 25–26 Oct 2011, Aarhus (DK). Available from: http://orbit.dtu.dk/fedora/ objects/orbit:71861/datastreams/file_6295429/content (2012)

  • Dotzek, N., S. Emeis, C. Lefebvre, J. Gerpott: Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorol. Z. 19, 115–129 (2010)

    Article  Google Scholar 

  • Dotzek, N.: An updated estimate of tornado occurrence in Europe. – Atmos. Res. 67–68, 153–161 (2003)

    Google Scholar 

  • DuPont, B., Cagan, J., & Moriarty, P. An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm. Energy, 106, 802–814 (2016)

    Google Scholar 

  • Elliot, D.L.: Status of wake and array loss research. Report PNL-SA–19978, Pacific Northwest Laboratory, September 1991, 17 pp. (1991) (available from: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6211976)

  • Elliot, D.L., J.C. Barnard: Observations of Wind Turbine Wakes and Surface Roughness Effects on Wind Flow Variability. Solar Energy, 45, 265–283 (1990)

    Article  Google Scholar 

  • Emeis, S.: A simple analytical wind park model considering atmospheric stability. Wind Energy 13, 459–469 (2010)

    Article  Google Scholar 

  • Emeis, S., S. Frandsen: Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles. Bound.-Lay. Meteorol. 64, 297–305 (1993)

    Article  Google Scholar 

  • Emeis, S., S. Siedersleben, A. Lampert, A. Platis, J. Bange, B. Djath, J. Schulz-Stellenfleth, T. Neumann: Exploring the wakes of large offshore wind farms. Journal of Physics: Conference Series, 753, 092014 (11 pp.) (2016)

    Google Scholar 

  • EWEA (Eds.): Delivering Offshore Wind Power in Europe. – Report, European Wind Energy Association, Brussels, 32 pp. (2007) [Available at www.ewea.org/fileadmin/ewea_documents/images/publications/offshore_report/ewea-offshore_report.pdf]

  • Feng, J., W.Z. Sheng: The Science of Making Torque from Wind 2012, IOP Publishing Journal of Physics: Conference Series 555 (2014) 012035, https://doi.org/10.1088/1742-6596/555/1/012035 (2012)

  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Wea. Rev., 140, 3017–3038 (2012)

    Article  Google Scholar 

  • Frandsen, S.: On the Wind Speed Reduction in the Center of Large Cluster of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 39, 251–265 (1992)

    Article  Google Scholar 

  • Frandsen, S.: Turbulence and turbulence generated structural loading in wind turbine clusters. Risø-R-1188(EN), 130 pp. (2007)

    Google Scholar 

  • Frandsen, S.T., Barthelmie, R.J., Pryor, S.C., Rathmann, O., Larsen, S., Højstrup, J., Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9, 39–53 (2006)

    Article  Google Scholar 

  • Frandsen, S., Jørgensen, H.E., Barthelmie, R., Rathmann, O., Badger, J., Hansen, K., Ott, S., Rethore, P.E., Larsen, S.E., Jensen, L.E.: The making of a second-generation wind farm efficiency model-complex. Wind Energy 12, 431–444 (2009)

    Article  Google Scholar 

  • Göçmen, T., P. van der Laan, P.-E. Réthoré, A. Peña Diaz, G.Chr. Larsen, S. Ott: Wind turbine wake models developed at the Technical University of Denmark: A review. Renewable and Sustainable Energy Reviews. 60, 752–769 (2016)

    Article  Google Scholar 

  • Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf)

  • Jimenez, A., A. Crespo, E. Migoya, J. Garcia: Advances in large-eddy simulation of a wind turbine wake. J. Phys. Conf. Ser., 75, 012041. https://doi.org/10.1088/1742-6596/75/1/012041 (2007)

  • Koschmieder, H.: Über Böen und Tromben (On straight-line winds and tornadoes). Die Naturwiss. 34, 203–211, 235–238 (1946) [In German]

    Google Scholar 

  • Lissaman, P.B.S.: Energy Effectiveness of arbitrary arrays of wind turbines. AIAA paper 79–0114 (1979)

    Google Scholar 

  • Magnusson, M.: Near-wake behaviour of wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 147–167 (1999)

    Article  Google Scholar 

  • Manwell, J.F., J.G. McGowan, A.L. Rogers: Wind Energy Explained: Theory, Design and Application. 2nd edition. John Wiley & Sons, Chichester. 689 pp. (2010)

    Google Scholar 

  • Newman, B.G.: The spacing of wind turbines in large arrays. J. Energy Conversion 16, 169–171 (1977)

    Article  Google Scholar 

  • Nygaard, N.G.: Wakes in very large wind farms and the effect of neighbouring wind farms. J. Phys. Conf. Ser., 524, 012162 (2014)

    Google Scholar 

  • Peña, A., O. Rathmann: Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energ. 17, 1269–1285 (2014)

    Article  Google Scholar 

  • Platis, A., S.K. Siedersleben, J. Bange, A. Lampert,, K. Bärfuss,, R. Hankers, B. Canadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis: First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 8, 2163 (2018)

    Google Scholar 

  • Quarton, D.C.: Characterization of wind turbine wake turbulence and its implications on wind farm spacing. Final Report ETSU WN 5096, Department of Energy of the UK. Garrad-Hassan Contract (1989)

    Google Scholar 

  • Rodrigues, S., P. Bauer, P.A.N. Bosman: Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability. Renew. Sust. Energ. Rev., 65, 587–609 (2016)

    Article  Google Scholar 

  • Siedersleben, S.K., A. Platis, J.K. Lundquist, A. Lampert, K. Bärfuss, B. Canadillas, B. Djath, J. Schulz-Stellenfleth, T. Neumann, J. Bange, S. Emeis: Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric 2 Flow Models with Aircraft Measurements. Meteorol. Z., submitted (2018)

    Google Scholar 

  • Skamarock, W. C., and Coauthors: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, 113 pp., doi:https://doi.org/10.5065/D68S4MVH (2008)

  • Smith, R.B.: Gravity wave effects on wind farm efficiency. Wind Energy, 13, 449–458 (2010)

    Article  Google Scholar 

  • Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010)

    Google Scholar 

  • Stevens, R. J., Martínez-Tossas, L. A., Meneveau, C. : Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renewable Energy, 116, 470–478 (2018)

    Article  Google Scholar 

  • Thom, H.C.S.: Tornado probabilities. – Mon. Wea. Rev. 91, 730–736 (1963)

    Article  Google Scholar 

  • Thomsen, K., P. Sørensen: Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 80, 121–136 (1999)

    Article  Google Scholar 

  • Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989)

    Google Scholar 

  • Troldborg, N., J.N. Sørensen, R. Mikkelsen: Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13, 86–99 (2010)

    Article  Google Scholar 

  • Vermeer, L.J., J.N. Sørensen, A. Crespo: Wind turbine wake aerodynamics. Progr. Aerospace Sci. 39, 467–510 (2003)

    Article  Google Scholar 

  • Wu, Y.T., F. Porté-Agel: Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound-Lay. Meteorol., 146, 181–205 (2013)

    Google Scholar 

  • Wussow, S., L. Sitzki, T. Hahm: 3D-simulations of the turbulent wake behind a wind turbine. J. Phys. Conf. Ser., 75, 012033, https://doi.org/10.1088/1742-6596/75/1/012033 (2007)

  • Xia G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Rem. Sens., 9, 698 (16 pp.) (2017)

    Google Scholar 

  • Xia G., L. Zhou, J.M. Freedman, S.B. Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn, 1–18 (2015)

    Google Scholar 

  • Zhou L., Y. Tian, R.S. Baidya, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nat. Clim. Change, 2, 539–543 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emeis, S. (2022). Physik der Windparks. In: Windenergie Meteorologie. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-22446-1_6

Download citation

Publish with us

Policies and ethics