Skip to main content

Winde in komplexem Terrain

  • Chapter
  • First Online:
Windenergie Meteorologie
  • 751 Accesses

Zusammenfassung

Immer mehr Onshore-Windkraftanlagen werden nicht in flachen Regionen in Küstennähe, sondern in komplexem (d. h. hügeligem oder bergigem) Gelände errichtet. Die bevorzugten Standorte in komplexem Gelände befinden sich in erhöhten Lagen, z. B. auf Bergkuppen. In diesem Kapitel werden daher einige der wichtigsten Strömungsmerkmale vorgestellt, die die Windenergieerträge in komplexem Gelände beeinflussen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Allnoch, N.: Windkraftnutzung im nordwestdeutschen Binnenland: Ein System zur Standortbewertung für Windkraftanlagen. Geographische Kommission für Westfalen, Münster, ARDEY-Verlag, 160 pp. (1992).

    Google Scholar 

  • Anderson P.S., Ladkin R.S., Renfrew I.A.: An Autonomous Doppler Sodar Wind Profiling System. J. Atmos. Oceanic Technol. 22, 1309–1325 (2005).

    Article  Google Scholar 

  • Astley, R.J.: A Finite Element Frozen Vorticity Solution for Two-Dimensional Wind Flow over Hills. 6th Australasian Conf. on Hydraulics and Fluid Mechanics, Adelaide, Australia, 443–446 (1977).

    Google Scholar 

  • Atkinson B.W.: Meso-scale Atmospheric Circulations. Academic Press, London etc., 495 pp. (1981).

    Google Scholar 

  • Barthelmie, R. J., Wang, H., Doubrawa, P., Giroux, G., Pryor, S. C.: Effects of an escarpment on flow parameters of relevance to wind turbines. Wind Energy, 19(12), 2271–2286 (2016).

    Article  Google Scholar 

  • Bowen, A.J.: Full Scale Measurements of the Atmospheric Turbulence over Two Escarpments. In: J.E. Cermak (ed.), Wind Engineering: Proc. 5th Internat. Conf., Fort Collins, Pergamon, 161–172 (1979).

    Google Scholar 

  • Bowen, A.J., D. Lindley,: A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground over Various Escarpment Shapes. Bound.-Layer Meteorol. 12, 259–271 (1977).

    Article  Google Scholar 

  • Bradley, E. F.: The Influence of Thermal Stability and Angle of Incidence on the Acceleration of Wind up a Slope. J. Wind Eng. Indust. Aerodynam. 15, 231–242 (1983).

    Article  Google Scholar 

  • Caccia, J.-L., Guénard, V., Benech, B., Campistron, B., Drobinski, P.: Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers. Ann. Geophysicae 22, 3927–3936 (2004).

    Article  Google Scholar 

  • Defant, F.: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklimatol. A 1, 421–450 (1949).

    Article  Google Scholar 

  • Emeis, S.: Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol. Z. 10, 141–149 (2001).

    Article  Google Scholar 

  • Emeis, S., H.P. Frank, F. Fiedler: Modification of air flow over an escarpment–Results from the Hjardemal experiment. Bound.-Lay. Meteorol. 74, 131–161. (1995).

    Article  Google Scholar 

  • Finnigan, J.J., S.E. Belcher: Flow over a hill covered with a plant canopy. Quart. J. Roy. Meteor. Soc. 130, 1–29 (2004).

    Article  Google Scholar 

  • Founda, D., M. Tombrou, D.P. Lalas, D.N. Asimakopoulos: Some measurements of turbulence characteristics over complex terrain. Bound.-Lay. Meteorol. 83, 221–245 (1997).

    Article  Google Scholar 

  • Frank, H., K. Heldt, S. Emeis, F. Fiedler: Flow over an Embankment: Speed-Up and Pressure Perturbation. Bound.-Lay. Meteorol. 63, 163–182 (1993).

    Article  Google Scholar 

  • Heimann, D., De Franceschi, M., Emeis, S., Lercher, P., Seibert, P. (Eds): Air pollution, traffic noise and related health effects in the Alpine space–a guide for authorities and consulters. ALPNAP comprehensive report. Università degli Studi di Trento, Trento, 335 pp. (2007) (Available from: http://www.ing.unitn.it/dica/tools/download/Quaderni/ALPNAP_CR_2007_Part_1.pdf).

  • Hoff, A.M.: Ein analytisches Verfahren zur Bestimmung der mittleren horizontalen Windgeschwindigkeiten über zweidimensionalen Hügeln. Ber. Inst. Meteorol. Klimatol. Univ. Hannover, 28, 68 pp. (1987).

    Google Scholar 

  • Jackson, P.S., J.C.R. Hunt: Turbulent wind flow over a low hill. Quart. J. Roy. Meteorol. Soc. 101, 929–955 (1975).

    Article  Google Scholar 

  • Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from http://orbit.dtu.dk/files/55857682/ris_m_2411.pdf).

  • Jensen, N.O., Petersen, E.L., Troen, I.: Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications, Report WCP-86, World Meteorol. Organization, Geneva, 85 pp. (1984).

    Google Scholar 

  • Justus, C.G., W.R. Hargraves, A. Mikhail, D. Graber: Methods for Estimating Wind Speed Frequency Distributions. J. Appl. Meteor. 17, 350–353 (1978).

    Article  Google Scholar 

  • Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid: A simple two-dimensional parameterisation for flux footprint prediction (FFP). Geosci. Model Develop. 8, 3695–3713 (2015).

    Article  Google Scholar 

  • Lugauer, M, Winkler, P.: Thermal circulation in South Bavaria–climatology and synoptic aspects. Meteorol. Z. 14, 15–30 (2005).

    Article  Google Scholar 

  • Mason, P. J.: Flow over the Summit of an Isolated Hill, Bound.-Lay. Meteorol. 37, 385–405 (1986).

    Article  Google Scholar 

  • Mortensen, N.G., E-L. Petersen: Influence of topographical input data on the accuracy of wind flow modelling in complex terrain. European Wind Energy Conference & Exhibition 1997, Dublin, Ireland, October 1997 (1997).

    Google Scholar 

  • Panofsky, H.A., D. Larko, R. Lipschutz, G. Stone, E.F. Bradley, A.J. Bowen und J. Højstrup: Spectra of velocity components over complex terrain. Quart. J. Roy. Meteorol. Soc. 108, 215–230 (1982).

    Article  Google Scholar 

  • Pauscher, L., D. Callies, T. Klaas, T. Foken: Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain. Meteorol. Z., prepubl. online (2017).

    Google Scholar 

  • Petersen, E.L., N.G. Mortensen, L. Landberg, J. Højstrup, H.P. Frank: Wind Power Meteorology. Part II: Siting and Models. Wind Energy, 1, 55–72 (1998b).

    Google Scholar 

  • Renfrew, I.A., Anderson, P.S.: Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Quart. J. Roy. Meteor. Soc. 132, 779–802 (2006).

    Google Scholar 

  • Smith, R.B.: The influence of mountains on the atmosphere. In: Landsberg HE, Saltzman B (Eds) Adv. Geophys. 21, 87–230 (1978).

    Google Scholar 

  • Steinacker, R.: Area-height distribution of a valley and its relation to the valley wind. Contr. Atmos. Phys. 57, 64–71 (1984).

    Google Scholar 

  • Steinfeld, G., S. Raasch, T. Markkanen: Footprints in homogeneously and heterogeneously driven boundary layers derived from a lagrangian stochastic particle model embedded into large-eddy simulation. Bound.-Layer Meteor. 129, 225–248 (2008).

    Google Scholar 

  • Sykes, R.I.: An Asymptotic Theory of Incompressible Turbulent Boundary Layer Flow over a Small-Lump. J. Fluid Mech. 101, 647–670 (1980).

    Article  MATH  Google Scholar 

  • Taylor, P.A.: Numerical studies of neutrally stratified planetary boundary layer flow over gentle topography, I: Two-dimensional cases. Bound.-Lay. Meteorol., 12, 37–60 (1977).

    Article  Google Scholar 

  • Taylor, P.A., Mason, P.J., Bradley, E.F.: Boundary-Layer Flow over Low Hills. Bound.-Lay. Meteorol. 39, 107–132 (1987).

    Article  Google Scholar 

  • Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989).

    Google Scholar 

  • Vergeiner, I.: An energetic theory of slope winds. Meteorol. Atmos. Phys. 19, 189–191 (1982).

    Google Scholar 

  • Vergeiner, I., Dreiseitl, E.: Valley winds and slope winds–observations and elementary thoughts. Meteorol. Atmos. Phys. 36, 264–286 (1987).

    Article  Google Scholar 

  • Watanabe, F. Uchida, T.: Micro-Siting of Wind Turbine in Complex Terrain: Simplified Fatigue Life Prediction of Main Bearing in Direct Drive Wind Turbines. Wind Eng., 39, 349–368 (2015).

    Article  Google Scholar 

  • Wildmann, N., Bernard, S., Bange, J.: Measuring the local wind field at an escarpment using small remotely-piloted aircraft. Renewable Energy, 103, 613–619 (2017).

    Article  Google Scholar 

  • Wood, N.: The onset of separation in neutral, turbulent flow over hills. Bound.-Lay. Meteorol., 76, 137–164 (1995).

    Article  Google Scholar 

  • Zenman, O., N.O. Jensen: Modification of Turbulence Characteristics in Flow over Hills. Quart. J. Roy. Meteorol. Soc. 113, 55–80 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emeis, S. (2022). Winde in komplexem Terrain. In: Windenergie Meteorologie. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-22446-1_4

Download citation

Publish with us

Policies and ethics