Skip to main content

Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images

  • Conference paper
  • First Online:
Advances in Artificial Intelligence – IBERAMIA 2022 (IBERAMIA 2022)

Abstract

Regional neuraxial analgesia is a safe method for pain relief during labor, but its effectiveness must be assessed carefully. As a non-invasive technique, thermal imaging is gaining increasing acclaim as an objective way to quantify blood flow redistribution-related warm modifications. Hence, thermal measurements are acquired under controlled conditions at different timestamps to determine the anesthesia depth by characterizing earlier thermal changes. However, the procedures during labor are limited by two main factors: a relatively small sample size is possible and thermal images cannot be acquired with both feet in the same position. This work implements an automatic semantic segmentation approach using five state-of-the-art deep learning architectures and an artifact removal algorithm based on morphological operators to deal with this problem. The obtained results are evaluated on two databases (acquired at the Universidad Nacional de Colombia sede Manizales and the SES Hospital Universitario de Caldas): controlled and uncontrolled environments for thermal data acquisition. Obtained results indicate that U-Mobilenetv2 approach outperforms the rest of the compared models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cvat.org/.

References

  1. Arteaga-Marrero, N., Hernández, A., Villa, E., González-Pérez, S., Luque, C., Ruiz-Alzola, J.: Segmentation approaches for diabetic foot disorders. Sensors 21(3) (2021). https://doi.org/10.3390/s21030934

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  3. Bouallal, D., Bougrine, A., Douzi, H., Harba, R., Canals, R., Vilcahuaman, L., Arbanil, H.: Segmentation of plantar foot thermal images: application to diabetic foot diagnosis. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 116–121 (2020). https://doi.org/10.1109/IWSSIP48289.2020.9145167

  4. Bougrine, A., Harba, R., Canals, R., Lédée, R., Jabloun, M.: On the segmentation of plantar foot thermal images with deep learning. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5 (2019)

    Google Scholar 

  5. Brown, D.T., Wildsmith, J.A.W., Covino, B.G., Scott, D.B.: Effect of Baricity on Spinal Anaesthesia with Amethocaine. BJA: British J. Anaesthesia 52(6), 589–596 (1980). https://doi.org/10.1093/bja/52.6.589

  6. Bruins, A.A., Kistemaker, K.R.J., Boom, A., Klaessens, J., Verdaasdonk, R., Boer, C.: Thermographic skin temperature measurement compared with cold sensation in predicting the efficacy and distribution of epidural anesthesia. J. Clin. Monit. Comput. 32, 335–341 (2018)

    Article  Google Scholar 

  7. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc. (2019)

    Google Scholar 

  8. Haren, F., Kadic, L., Driessen, J.: Skin temperature measured by infrared thermography after ultrasound-guided blockade of the sciatic nerve. Acta anaesthesiologica Scandinavica 57, August 2013. https://doi.org/10.1111/aas.12170

  9. He, Y., et al.: Infrared machine vision and infrared thermography with deep learning: a review. Infrared Phys. Technol. 116, 103754 (2021). https://doi.org/10.1016/j.infrared.2021.103754. https://www.sciencedirect.com/science/article/pii/S1350449521001262

  10. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017). http://arxiv.org/abs/1704.04861

  11. Jimenez-Castaño, C.A., Álvarez-Meza, A.M., Aguirre-Ospina, O.D., Cárdenas-Peña, D.A., Orozco-Gutiérrez, Á.A.: Random fourier features-based deep learning improvement with class activation interpretability for nerve structure segmentation. Sensors 21(22), 7741 (2021)

    Article  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2015)

    Google Scholar 

  14. Morid, M.A., Borjali, A., Del Fiol, G.: A scoping review of transfer learning research on medical image analysis using imagenet. Comput. Biol. Med. 128, 104115 (2021)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  17. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842

  18. Vardasca, R., Magalhaes, C., Mendes, J.: Biomedical applications of infrared thermal imaging: current state of machine learning classification. Proceedings 27(1) (2019). https://doi.org/10.3390/proceedings2019027046. https://www.mdpi.com/2504-3900/27/1/46

Download references

Acknowledgements

Under grants provided by the Minciencias’s project: “Herramienta de apoyo a la predicción de los efectos de anestéticos locales vía neuroaxial epidural a partir de termografía por infrarrojo" code 111984468021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Aguirre-Arango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mejia-Zuluaga, R. et al. (2022). Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22419-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22418-8

  • Online ISBN: 978-3-031-22419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics