Skip to main content

Time Series Forecasting for Improving Quality of Life and Ecosystem Services in Smart Cities

  • Conference paper
  • First Online:
Ambient Intelligence—Software and Applications—13th International Symposium on Ambient Intelligence (ISAmI 2022)

Abstract

Quality of life is one of the factors that most influence the mood of citizens. As many studies have shown, one of the ways to increase the perception of quality of life are the actions on the Green Infrastructure of cities. Some studies have resorted to LSTM and ARIMA networks to make environmental predictions, however, as will be shown in this article, the seasonality of these models is a brake on the predictions. In order to perform efficient actions, an application case is presented, which has made use of cutting-edge methodologies thanks to IoT technology, Big Data and Artificial Intelligence to collect environmental data in order to perform time series prediction processes with them using GAM models, which have proven to be the most efficient during the tests carried out. Thanks to this work, it has been possible to obtain information on future environmental scenarios in order to make the best decisions on the influence that urban actions implemented by local authorities will have on citizens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alkama, R., Forzieri, G., Duveiller, G., Grassi, G., Liang, S., Cescatti, A.: Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13(1), 1–10 (2022)

    Article  Google Scholar 

  2. Alonso, R.S., Sittón-Candanedo, I., Casado-Vara, R., Prieto, J., Corchado, J.M.: Deep reinforcement learning for the management of software-defined networks in smart farming. In: 2020 International Conference on Omni-layer Intelligent Systems (COINS), pp. 1–6. IEEE (2020)

    Google Scholar 

  3. Bühne, H.S., Tobias, J.A., Durant, S.M., Pettorelli, N.: Improving predictions of climate change-land use change interactions. Trends Ecol. Evol. 36(1), 29–38 (2021)

    Google Scholar 

  4. Carvalho, M., Melo-Gonçalves, P., Teixeira, J., Rocha, A.: Regionalization of europe based on a k-means cluster analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth, Parts A/B/C 94, 22–28 (2016)

    Article  Google Scholar 

  5. Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in iot-blockchain management. Inf. Fusion 49, 227–239 (2019)

    Article  Google Scholar 

  6. Casado-Vara, R., de la Prieta, F., Prieto, J., Corchado, J.M.: Blockchain framework for iot data quality via edge computing. In: Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, pp. 19–24 (2018)

    Google Scholar 

  7. Casado-Vara, R., Martin-del Rey, A., Affes, S., Prieto, J., Corchado, J.M.: Iot network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)

    Article  Google Scholar 

  8. Casado-Vara, R., Martin del Rey, A., Pérez-Palau, D., de-la Fuente-Valentín, L., Corchado, J.M.: Web traffic time series forecasting using lstm neural networks with distributed asynchronous training. Mathematics 9(4), 421 (2021)

    Google Scholar 

  9. Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. In: Wireless Communications and Mobile Computing 2018 (2018)

    Google Scholar 

  10. Chang, Y.S., Chiao, H.T., Abimannan, S., Huang, Y.P., Tsai, Y.T., Lin, K.M.: An lstm-based aggregated model for air pollution forecasting. Atmos. Pollution Res. 11(8), 1451–1463 (2020)

    Article  Google Scholar 

  11. Circular Cities: Cities of Tomorrow (2018)

    Google Scholar 

  12. European Commission: Attitudes of Europeans Towards the Environment (Mar 2020). https://europa.eu/eurobarometer/surveys/detail/2257

  13. Corchado, J.M.: Blockchain and its applications on edge computing, industry 4.0, iot and smart cities. Dieleman, S (2014)

    Google Scholar 

  14. Corchado, J.M., Chamoso, P., Hernández, G., Gutierrez, A.S.R., Camacho, A.R., González-Briones, A., Pinto-Santos, F., Goyenechea, E., García-Retuerta, D., Alonso-Miguel, M., et al.: Deepint. net: a rapid deployment platform for smart territories. Sensors 21(1), 236 (2021)

    Google Scholar 

  15. Corchado, J.M., Pinto-Santos, F., Aghmou, O., Trabelsi, S.: Intelligent development of smart cities: Deepint. net case studies. In: Sustainable Smart Cities and Territories International Conference, pp. 211–225. Springer, Heidelberg (2021)

    Google Scholar 

  16. Corchado, J.M.: Technologies for Sustainable Consumption—researchgate.net (Apr 2021)

    Google Scholar 

  17. Deilami, K., Kamruzzaman, M., Liu, Y.: Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Observation Geoinf. 67, 30–42 (2018)

    Article  Google Scholar 

  18. Dimri, T., Ahmad, S., Sharif, M.: Time series analysis of climate variables using seasonal arima approach. J. Earth Syst. Sci. 129(1), 1–16 (2020)

    Article  Google Scholar 

  19. Duranton, G., Puga, D.: The growth of cities. Handb. Econ. Growth 2, 781–853 (2014)

    Article  Google Scholar 

  20. Faghmous, J.H., Kumar, V.: A big data guide to understanding climate change: the case for theory-guided data science. Big data 2(3), 155–163 (2014)

    Article  Google Scholar 

  21. Fan, T., Chen, Y.: A scheme of data management in the internet of things. In: 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp. 110–114. IEEE (2010)

    Google Scholar 

  22. Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., Al-Fuqaha, A.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutorials 19(4), 2456–2501 (2017)

    Article  Google Scholar 

  23. Giannico, V., Spano, G., Elia, M., D’Este, M., Sanesi, G., Lafortezza, R.: Green spaces, quality of life, and citizen perception in European cities. Environ. Res. 196, 110922 (2021)

    Article  Google Scholar 

  24. González-Briones, A., Castellanos-Garzón, J.A., Mezquita Martín, Y., Prieto, J., Corchado, J.M.: A framework for knowledge discovery from wireless sensor networks in rural environments: a crop irrigation systems case study. In: Wireless Communications and Mobile Computing 2018 (2018)

    Google Scholar 

  25. González-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.M.: Agreement technologies for energy optimization at home. Sensors 18(5), 1633 (2018)

    Article  Google Scholar 

  26. González-Briones, A., Hernández, G., Corchado, J.M., Omatu, S., Mohamad, M.S.: Machine learning models for electricity consumption forecasting: a review. In: 2019 2nd International Conference on Computer Applications Information Security (ICCAIS), pp. 1–6 (2019). https://doi.org/10.1109/CAIS.2019.8769508

  27. Grogan, M.: Limitations of Arima: Dealing with Outliers (Sep 2020). https://towardsdatascience.com/limitations-of-arima-dealing-with-outliers-30cc0c6ddf33

  28. Hassani, H., Huang, X., Silva, E.: Big data and climate change. Big Data Cogn. Comput. 3(1), 12 (2019)

    Article  Google Scholar 

  29. Kitchin, R.: The promise and peril of smart cities. Comput. Law: J. Soc. Comput. Law 26(2) (2015)

    Google Scholar 

  30. Llorent-Bedmar, V., Palma, V.C.C.D., Navarro-Granados, M.: The rural exodus of young people from empty Spain. Socio-educational aspects. J. Rural Stud. 82, 303–314 (2021)

    Google Scholar 

  31. Ma, J., Ding, Y., Cheng, J.C., Jiang, F., Tan, Y., Gan, V.J., Wan, Z.: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Cleaner Prod. 244, 118955 (2020)

    Article  Google Scholar 

  32. Mezquita, Y., Casado, R., Gonzalez-Briones, A., Prieto, J., Corchado, J.M., AETiC, A.: Blockchain technology in IoT systems: review of the challenges. In: Annals of Emerging Technologies in Computing (AETiC), Print ISSN pp. 2516–0281 (2019)

    Google Scholar 

  33. Milojevic-Dupont, N., Creutzig, F.: Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021)

    Article  Google Scholar 

  34. United Nations: United Nations Sustainable Development (2015). https://www.un.org/sustainabledevelopment/

  35. United Nations: Around 2.5 Billion More People will be Living in Cities by 2050 (May 2018). https://www.un.org/development/desa/en/news/population/2018-world-urbanization-prospects.html

  36. Oppio, A., Bottero, M., Stanghellini, S.: Integrated Evaluation for the Management of Contemporary Cities (2016)

    Google Scholar 

  37. Parra Domínguez, J., Rodríguez González, S., Prieto Tejedor, J., Manuel Corchado, J., Marreiros, G., Ramos, C., et al.: Actas del iii taller de tecnologías de la información y la comunicación disruptivas para la innovación y la transformación digital: 18 de diciembre de 2020, online (2022)

    Google Scholar 

  38. Querejeta, M.U., Alonso, R.S.: Modeling air quality and cancer incidences in proximity to hazardous waste and incineration treatment areas. In: Second International Workshop on Data Engineering and Analytics (WDEA 2019), pp. 108–122 (2019)

    Google Scholar 

  39. Robson, W.: The Math of Prophet (Nov 2020). https://medium.com/future-vision/the-math-of-prophet-46864fa9c55a#:~ :text=Prophet%20is%20a%20procedure%20for,several%20seasons%20of%20historical%20data

  40. Santos, T., Silva, C., Tenedório, J.A.: Promoting citizens’ quality of life through green urban planning. In: International Conference on Geographical Information Systems Theory, Applications and Management, pp. 153–175. Springer, Heidelberg (2017)

    Google Scholar 

  41. Sittón-Candanedo, I., Alonso, R.S., Corchado, J.M., Rodríguez-González, S., Casado-Vara, R.: A review of edge computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 99, 278–294 (2019)

    Article  Google Scholar 

  42. Wang, Y., Zhu, S., Li, C.: Research on multistep time series prediction based on lstm. In: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 1155–1159. IEEE (2019)

    Google Scholar 

  43. Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? an urban scholar’s perspective. Sensors 20(10), 2988 (2020)

    Google Scholar 

  44. Zhongming, Z., Wei, L., et al.: Urban Adaptation to Climate Change in Europe 2016-Transforming Cities in a Changing Climate (2016)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Institute for Business Competitiveness of Castilla y León, and the European Regional Development Fund under grant CCTT3/20/SA/0002 (AIR-SCity project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl López-Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Blanco, R., Martín, J.H., Alonso, R.S., Prieto, J. (2023). Time Series Forecasting for Improving Quality of Life and Ecosystem Services in Smart Cities. In: Julián, V., Carneiro, J., Alonso, R.S., Chamoso, P., Novais, P. (eds) Ambient Intelligence—Software and Applications—13th International Symposium on Ambient Intelligence. ISAmI 2022. Lecture Notes in Networks and Systems, vol 603. Springer, Cham. https://doi.org/10.1007/978-3-031-22356-3_8

Download citation

Publish with us

Policies and ethics