Abstract
Quality of life is one of the factors that most influence the mood of citizens. As many studies have shown, one of the ways to increase the perception of quality of life are the actions on the Green Infrastructure of cities. Some studies have resorted to LSTM and ARIMA networks to make environmental predictions, however, as will be shown in this article, the seasonality of these models is a brake on the predictions. In order to perform efficient actions, an application case is presented, which has made use of cutting-edge methodologies thanks to IoT technology, Big Data and Artificial Intelligence to collect environmental data in order to perform time series prediction processes with them using GAM models, which have proven to be the most efficient during the tests carried out. Thanks to this work, it has been possible to obtain information on future environmental scenarios in order to make the best decisions on the influence that urban actions implemented by local authorities will have on citizens.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alkama, R., Forzieri, G., Duveiller, G., Grassi, G., Liang, S., Cescatti, A.: Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13(1), 1–10 (2022)
Alonso, R.S., Sittón-Candanedo, I., Casado-Vara, R., Prieto, J., Corchado, J.M.: Deep reinforcement learning for the management of software-defined networks in smart farming. In: 2020 International Conference on Omni-layer Intelligent Systems (COINS), pp. 1–6. IEEE (2020)
Bühne, H.S., Tobias, J.A., Durant, S.M., Pettorelli, N.: Improving predictions of climate change-land use change interactions. Trends Ecol. Evol. 36(1), 29–38 (2021)
Carvalho, M., Melo-Gonçalves, P., Teixeira, J., Rocha, A.: Regionalization of europe based on a k-means cluster analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth, Parts A/B/C 94, 22–28 (2016)
Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in iot-blockchain management. Inf. Fusion 49, 227–239 (2019)
Casado-Vara, R., de la Prieta, F., Prieto, J., Corchado, J.M.: Blockchain framework for iot data quality via edge computing. In: Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, pp. 19–24 (2018)
Casado-Vara, R., Martin-del Rey, A., Affes, S., Prieto, J., Corchado, J.M.: Iot network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst. 102, 965–977 (2020)
Casado-Vara, R., Martin del Rey, A., Pérez-Palau, D., de-la Fuente-Valentín, L., Corchado, J.M.: Web traffic time series forecasting using lstm neural networks with distributed asynchronous training. Mathematics 9(4), 421 (2021)
Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. In: Wireless Communications and Mobile Computing 2018 (2018)
Chang, Y.S., Chiao, H.T., Abimannan, S., Huang, Y.P., Tsai, Y.T., Lin, K.M.: An lstm-based aggregated model for air pollution forecasting. Atmos. Pollution Res. 11(8), 1451–1463 (2020)
Circular Cities: Cities of Tomorrow (2018)
European Commission: Attitudes of Europeans Towards the Environment (Mar 2020). https://europa.eu/eurobarometer/surveys/detail/2257
Corchado, J.M.: Blockchain and its applications on edge computing, industry 4.0, iot and smart cities. Dieleman, S (2014)
Corchado, J.M., Chamoso, P., Hernández, G., Gutierrez, A.S.R., Camacho, A.R., González-Briones, A., Pinto-Santos, F., Goyenechea, E., García-Retuerta, D., Alonso-Miguel, M., et al.: Deepint. net: a rapid deployment platform for smart territories. Sensors 21(1), 236 (2021)
Corchado, J.M., Pinto-Santos, F., Aghmou, O., Trabelsi, S.: Intelligent development of smart cities: Deepint. net case studies. In: Sustainable Smart Cities and Territories International Conference, pp. 211–225. Springer, Heidelberg (2021)
Corchado, J.M.: Technologies for Sustainable Consumption—researchgate.net (Apr 2021)
Deilami, K., Kamruzzaman, M., Liu, Y.: Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Observation Geoinf. 67, 30–42 (2018)
Dimri, T., Ahmad, S., Sharif, M.: Time series analysis of climate variables using seasonal arima approach. J. Earth Syst. Sci. 129(1), 1–16 (2020)
Duranton, G., Puga, D.: The growth of cities. Handb. Econ. Growth 2, 781–853 (2014)
Faghmous, J.H., Kumar, V.: A big data guide to understanding climate change: the case for theory-guided data science. Big data 2(3), 155–163 (2014)
Fan, T., Chen, Y.: A scheme of data management in the internet of things. In: 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp. 110–114. IEEE (2010)
Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., Al-Fuqaha, A.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutorials 19(4), 2456–2501 (2017)
Giannico, V., Spano, G., Elia, M., D’Este, M., Sanesi, G., Lafortezza, R.: Green spaces, quality of life, and citizen perception in European cities. Environ. Res. 196, 110922 (2021)
González-Briones, A., Castellanos-Garzón, J.A., Mezquita Martín, Y., Prieto, J., Corchado, J.M.: A framework for knowledge discovery from wireless sensor networks in rural environments: a crop irrigation systems case study. In: Wireless Communications and Mobile Computing 2018 (2018)
González-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.M.: Agreement technologies for energy optimization at home. Sensors 18(5), 1633 (2018)
González-Briones, A., Hernández, G., Corchado, J.M., Omatu, S., Mohamad, M.S.: Machine learning models for electricity consumption forecasting: a review. In: 2019 2nd International Conference on Computer Applications Information Security (ICCAIS), pp. 1–6 (2019). https://doi.org/10.1109/CAIS.2019.8769508
Grogan, M.: Limitations of Arima: Dealing with Outliers (Sep 2020). https://towardsdatascience.com/limitations-of-arima-dealing-with-outliers-30cc0c6ddf33
Hassani, H., Huang, X., Silva, E.: Big data and climate change. Big Data Cogn. Comput. 3(1), 12 (2019)
Kitchin, R.: The promise and peril of smart cities. Comput. Law: J. Soc. Comput. Law 26(2) (2015)
Llorent-Bedmar, V., Palma, V.C.C.D., Navarro-Granados, M.: The rural exodus of young people from empty Spain. Socio-educational aspects. J. Rural Stud. 82, 303–314 (2021)
Ma, J., Ding, Y., Cheng, J.C., Jiang, F., Tan, Y., Gan, V.J., Wan, Z.: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Cleaner Prod. 244, 118955 (2020)
Mezquita, Y., Casado, R., Gonzalez-Briones, A., Prieto, J., Corchado, J.M., AETiC, A.: Blockchain technology in IoT systems: review of the challenges. In: Annals of Emerging Technologies in Computing (AETiC), Print ISSN pp. 2516–0281 (2019)
Milojevic-Dupont, N., Creutzig, F.: Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021)
United Nations: United Nations Sustainable Development (2015). https://www.un.org/sustainabledevelopment/
United Nations: Around 2.5 Billion More People will be Living in Cities by 2050 (May 2018). https://www.un.org/development/desa/en/news/population/2018-world-urbanization-prospects.html
Oppio, A., Bottero, M., Stanghellini, S.: Integrated Evaluation for the Management of Contemporary Cities (2016)
Parra Domínguez, J., Rodríguez González, S., Prieto Tejedor, J., Manuel Corchado, J., Marreiros, G., Ramos, C., et al.: Actas del iii taller de tecnologías de la información y la comunicación disruptivas para la innovación y la transformación digital: 18 de diciembre de 2020, online (2022)
Querejeta, M.U., Alonso, R.S.: Modeling air quality and cancer incidences in proximity to hazardous waste and incineration treatment areas. In: Second International Workshop on Data Engineering and Analytics (WDEA 2019), pp. 108–122 (2019)
Robson, W.: The Math of Prophet (Nov 2020). https://medium.com/future-vision/the-math-of-prophet-46864fa9c55a#:~ :text=Prophet%20is%20a%20procedure%20for,several%20seasons%20of%20historical%20data
Santos, T., Silva, C., Tenedório, J.A.: Promoting citizens’ quality of life through green urban planning. In: International Conference on Geographical Information Systems Theory, Applications and Management, pp. 153–175. Springer, Heidelberg (2017)
Sittón-Candanedo, I., Alonso, R.S., Corchado, J.M., Rodríguez-González, S., Casado-Vara, R.: A review of edge computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 99, 278–294 (2019)
Wang, Y., Zhu, S., Li, C.: Research on multistep time series prediction based on lstm. In: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 1155–1159. IEEE (2019)
Yigitcanlar, T., Butler, L., Windle, E., Desouza, K.C., Mehmood, R., Corchado, J.M.: Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? an urban scholar’s perspective. Sensors 20(10), 2988 (2020)
Zhongming, Z., Wei, L., et al.: Urban Adaptation to Climate Change in Europe 2016-Transforming Cities in a Changing Climate (2016)
Acknowledgements
This work has been partially supported by the Institute for Business Competitiveness of Castilla y León, and the European Regional Development Fund under grant CCTT3/20/SA/0002 (AIR-SCity project).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López-Blanco, R., Martín, J.H., Alonso, R.S., Prieto, J. (2023). Time Series Forecasting for Improving Quality of Life and Ecosystem Services in Smart Cities. In: Julián, V., Carneiro, J., Alonso, R.S., Chamoso, P., Novais, P. (eds) Ambient Intelligence—Software and Applications—13th International Symposium on Ambient Intelligence. ISAmI 2022. Lecture Notes in Networks and Systems, vol 603. Springer, Cham. https://doi.org/10.1007/978-3-031-22356-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-22356-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22355-6
Online ISBN: 978-3-031-22356-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)