Skip to main content

Accurate Approximations of Density Functional Theory for Large Systems with Applications to Defects in Crystalline Solids

  • Chapter
  • First Online:
Density Functional Theory

Abstract

This chapter presents controlled approximations of Kohn–Sham density functional theory (DFT) that enable very large scale simulations. The work is motivated by the study of defects in crystalline solids, though the ideas can be used in other applications. The key idea is to formulate DFT as a minimization problem over the density operator, and to cast spatial and spectral discretization as systematically convergent approximations. This enables efficient and adaptive algorithms that solve the equations of DFT with no additional modeling, and up to desired accuracy, for very large systems, with linear and sublinear scaling. Various approaches based on such approximations are presented, and their numerical performance is demonstrated through selected examples. These examples also provide important insights into the mechanics and physics of defects in crystalline solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we use the subscript h to index the nested spaces following the typical notation in computational science, and not to signify a relationship with the Hamiltonian.

  2. 2.

    Minimum wall-times computed using a metric of 40% parallel efficiency.

References

  1. F.F. Abraham, J.Q. Broughton, N. Bernstein and E. Kaxiras. Spanning the length scales in dynamic simulation. Comput. Phys.12, 538–546 (1998).

    Article  Google Scholar 

  2. C. Albrecht, C. Klaar, J.E. Pask, M.A. Schweitzer, N. Sukumar and A. Ziegenhagel. Orbital-enriched flat-top partition of unity method for the Schrödinger eigenproblem. Comput. Methods Appl. Mech. Eng.342, 224–239 (2018).

    Article  MATH  Google Scholar 

  3. A. Anantharaman and E. Cancès. Existence of minimizers for Kohn–Sham models in quantum chemistry. Ann. Inst. Henri Poincaré (C) Anal. Non-Lineaire26(6), 2425–2455 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Baer and M. Head-Gordon. Chebyshev expansion methods for electronic structure calculations on large molecular systems. J. Chem. Phys.107 (1997).

    Google Scholar 

  5. M. Benzi, P. Boito and N. Razouk. Decay properties of spectral projectors with applications to electronic structure. SIAM Rev.55(1), 3–64 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bernstein, J.R. Kermode and G. Csanyi. Hybrid atomistic simulation methods for materials systems. Rep. Prog. Phys.72(2), 026501 Jan. (2009).

    Google Scholar 

  7. M. Bethkenhagen, A. Sharma, P. Suryanarayana, J.E. Pask, B. Sadigh and S. Hamel. Properties of carbon up to 10 million kelvin from Kohn-Sham density functional theory molecular dynamics. Phys. Rev. E107(1), 015306 (2023). https://doi.org/10.1103/PhysRevE.107.015306.

  8. P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B50, 17953–17979 Dec. (1994).

    Google Scholar 

  9. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun.180(11), 2175–2196 (2009).

    Article  MATH  Google Scholar 

  10. J.P. Boyd. Chebyshev and Fourier spectral methods. Dover (2001).

    Google Scholar 

  11. K. Burke. Perspective on density functional theory. J. Chem. Phys. 136, 150901, Apr. (2012).

    Google Scholar 

  12. H. Chen, X. Dai, X. Gong, L. He and A. Zhou. Adaptive Finite Element Approximations for Kohn–Sham Models. Multiscale Model. Simul.12(4), 1828–1869 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Das, P. Motamarri, V. Gavini, B. Turcksin, Y.W. Li and B. Leback. Fast, scalable and accurate finite-element based ab initio calculations using mixed precision computing: 46 PFLOPS simulation of a metallic dislocation system. In Proceedings of the 6th European Conference on Computer Systems, number 2, pp. 1–11 (2019).

    Google Scholar 

  14. D. Davydov, T.D. Young and P. Steinmann. On the adaptive finite element analysis of the Kohn–Sham equations: methods, algorithms, and implementation. Int. J. Numer. Methods Eng.106(11), 863–888 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Fornberg. A practical guide to pseudospectral methods. Number 1. Cambridge Univ. Press (1998).

    Google Scholar 

  16. C. J. García-Cervera, J. Lu, Y. Xuan and W. E. Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn–Sham density functional theory. Phys. Rev. B79, 115110 Mar. (2009).

    Google Scholar 

  17. V. Gavini, K. Bhattacharya and M. Ortiz. Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation. J. Mech. Phys. Solids55(4), 697–718 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Ghosh, H. Ma, V. Gavini and G. Galli. All-electron density functional calculations for electron and nuclear spin interactions in molecules and solids. Phys. Rev. Mater.3, 043801 Apr. (2019).

    Google Scholar 

  19. K. Ghosh, H. Ma, M. Onizhuk, V. Gavini and G. Galli. Spin-spin interactions in defects in solids from mixed all-electron and pseudopotential first-principles calculations. npj Computational Materials7, 2021.

    Google Scholar 

  20. S. Ghosh and K. Bhattacharya. Spectral quadrature for the first principles study of crystal defects: Application to magnesium. J. Comput. Phys. 456, 111035 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Ghosh and P. Suryanarayana. SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems. Comput. Phys. Commun.216, 109–125 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Ghosh and P. Suryanarayana. SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Isolated clusters. Comput. Phys. Commun.212, 189–204 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter21(39), 395502 (2009).

    Google Scholar 

  24. S. Goedecker and L. Colombo. Efficient linear scaling algorithm for tight-binding molecular dynamics. Phys. Rev. Lett.73(1), 122 (1994).

    Google Scholar 

  25. S. Goedecker and M. Teter. Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B51(15), 9455 (1995).

    Google Scholar 

  26. G.H. Golub and G. Meurant. Matrices, moments and quadrature with applications. Princeton Univ. Press (2009).

    Book  MATH  Google Scholar 

  27. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty and D. Allan. First-principles computation of material properties: the {ABINIT} software project. Comput. Mater. Sci.25(3), 478–492 (2002).

    Article  Google Scholar 

  28. N. Hale, N.J. Higham and L.N. Trefethen. Computing Aˆα,∖log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal.46(5), 2505–2523 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. D.R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B88, 085117 Aug. (2013).

    Google Scholar 

  30. R. Haydock. Solid State Phys., volume 35. Academic Press (1980).

    Google Scholar 

  31. P.D. Haynes, C.-K. Skylaris, A.A. Mostofi and M.C. Payne. ONETEP: linear-scaling density-functional theory with local orbitals and plane waves. Phys. Status Solidi B243(11), 2489–2499 (2006).

    Article  Google Scholar 

  32. W.J. Hehre, R.F. Stewart and J.A. Pople. Self-Consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys.51(6), 2657–2664 (1969).

    Google Scholar 

  33. J.P. Hirth and J. Lothe. Theory of dislocations. Wiley, New York, 2nd edition (1982).

    MATH  Google Scholar 

  34. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. B136, 864–871 (1964).

    Article  MathSciNet  Google Scholar 

  35. C. Huang and E.A. Carter. Transferable local pseudopotentials for magnesium, aluminum and silicon. Phys. Chem. Chem. Phys.10(47), 7109–7120 (2008).

    Article  Google Scholar 

  36. J. Hutter, M. Iannuzzi, F. Schiffmann and J. VandeVondele. CP2K: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci.4 (2014).

    Google Scholar 

  37. S. Ismail-Beigi and T. Arias. New Algebraic Formulation of Density Functional Calculation. Comput. Phys. Commun.128, 1–45 (2000).

    Article  MATH  Google Scholar 

  38. C. Janot, D. Malléjac and B. George. Vacancy-formation energy and entropy in magnesium single crystals. Phys. Rev. B2(8), 3088 (1970).

    Google Scholar 

  39. W.J. Joost and P.E. Krajewski. Towards magnesium alloys for high-volume automotive applications. Scr. Mater.128, 107–112 (2017).

    Article  Google Scholar 

  40. B. Kanungo and V. Gavini. Large-scale all-electron density functional theory calculations using an enriched finite-element basis. Phys. Rev. B95, 035112 Jan. (2017).

    Google Scholar 

  41. J. Knap and M. Ortiz. An analysis of the quasicontinuum method. J. Mech. Phys. Solids49(9), 1899–1923 (2001).

    Article  MATH  Google Scholar 

  42. W. Kohn. Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett.76(17), 3168 (1996).

    Google Scholar 

  43. W. Kohn and L.J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A140, 1133–1138 (1965).

    Article  MathSciNet  Google Scholar 

  44. G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54(16), 11169–11186 (1996).

    Article  Google Scholar 

  45. L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang, Y. Saad and J. R. Chelikowsky. PARSEC — the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures. Phys. Status Solidi B243(5), 1063–1079 (2006).

    Article  Google Scholar 

  46. M.K. Kulekci. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol.39, 851–865 (2008).

    Article  Google Scholar 

  47. K. Kuśnierczyk and M. Basista. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials. J Biomater Appl.31(6), 878–900 (2017).

    Article  Google Scholar 

  48. X.-P. Li, R.W. Nunes and D. Vanderbilt. Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47, 10891–10894 Apr. (1993).

    Google Scholar 

  49. L. Lin, M. Chen, C. Yang and Y. He. Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion. J. Phys. Condens. Matter25(29) (2013).

    Google Scholar 

  50. C. Mairy, J. Hillairet and D. Schumacher. Energie de formation et concentration d’équilibre des lacunes dans le magnésium. Acta Metall.15(7), 1258–1261 (1967).

    Article  Google Scholar 

  51. V. Michaud-Rioux, L. Zhang and H. Guo. RESCU: A real space electronic structure method. J. Comput. Phys.307, 593–613 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Motamarri, Personal communication with the authors (2021).

    Google Scholar 

  53. P. Motamarri, S. Das, S. Rudraraju, K. Ghosh, D. Davydov and V. Gavini. DFT-FE - A massively parallel adaptive finite-element code for large-scale density functional theory calculations. Comput. Phys. Commun.246, 106853 (2020).

    Article  MATH  Google Scholar 

  54. P. Motamarri and V. Gavini. Subquadratic-scaling subspace projection method for large-scale Kohn–Sham density functional theory calculations using spectral finite-element discretization. Phys. Rev. B90, 115127 Sep. (2014).

    Google Scholar 

  55. P. Motamarri and V. Gavini. Configurational forces in electronic structure calculations using Kohn–Sham density functional theory. Phys. Rev. B97, 165132 Apr. (2018).

    Google Scholar 

  56. P. Motamarri, V. Gavini, K. Bhattacharya and M. Ortiz. Spectrum-splitting approach for Fermi-operator expansion in all-electron Kohn–Sham DFT calculations. Phys. Rev. B95, 035111 Jan. (2017).

    Google Scholar 

  57. P. Motamarri, M. Nowak, K. Leiter, J. Knap and V. Gavini. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys.253, 308–343 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Mura. Micromechanics of Defects in Solids. Nijhoff Publishers (1987).

    Google Scholar 

  59. A.M.N. Niklasson. Implicit purification for temperature-dependent density matrices. Phys. Rev. B68, 233104 Dec. (2003).

    Google Scholar 

  60. R. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford Univ. Press (1994).

    Google Scholar 

  61. J. Pask and N. Sukumar. Partition of unity finite element method for quantum mechanical materials calculations. Extreme Mech. Lett.11, 8–17 (2017).

    Article  Google Scholar 

  62. J.E. Pask, B.M. Klein, C.Y. Fong and P.A. Sterne. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach. Phys. Rev. B59, 12352–12358 (1999).

    Article  Google Scholar 

  63. J.E. Pask and P.A. Sterne. Finite element methods in ab initio electronic structure calculations. Modell. Simul. Mater. Sci. Eng.13(3), R71 (2005).

    Google Scholar 

  64. J.P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B45, 13244 (1992).

    Article  Google Scholar 

  65. R. Phillips. Crystals, defects and microstructures: Modeling across scales. Cambridge Univ. Press (2001).

    Book  Google Scholar 

  66. M. Ponga, K. Bhattacharya and M. Ortiz. A sublinear-scaling approach to density-functional-theory analysis of crystal defects. J. Mech. Phys. Solids95, 530–556 Oct. (2016).

    Google Scholar 

  67. M. Ponga, K. Bhattacharya and M. Ortiz. Large scale ab-initio simulations of dislocations. J. Comput. Phys., 1–25 (2020).

    Google Scholar 

  68. P.P. Pratapa, P. Suryanarayana and J.E. Pask. Spectral Quadrature method for accurate \(\mathcal {O}(N)\) electronic structure calculations of metals and insulators. Comput. Phys. Commun.200, 96–107 (2016).

    Google Scholar 

  69. E. Prodan and W. Kohn. Nearsightedness of electronic matter. PNAS102(33), 11635–11638 (2005).

    Article  Google Scholar 

  70. W. Rudin. Functional Analysis. McGraw-Hill, Boston (1991).

    MATH  Google Scholar 

  71. n.d. Rufus, B. Kanungo and V. Gavini. Fast and robust all-electron density functional theory calculations in solids using orthogonalized enriched finite elements. Phys. Rev. B104, 085112 Aug. (2021).

    Google Scholar 

  72. A. Sharma, S. Hamel, M. Bethkenhagen, J.E. Pask and P. Suryanarayana. Real-space formulation of the stress tensor for \(\mathcal {O}(N)\) density functional theory: Application to high temperature calculations. J. Chem. Phys.153(3), 034112 (2020).

    Google Scholar 

  73. D. Singh and L. Nordström. Plane waves, pseudopotentials and the LAPW method. Springer Verlag (2006).

    Google Scholar 

  74. S. P. Suetin. Padé approximants and efficient analytic continuation of a power series. Russian Math. Surv.57(1), 43 (2002).

    Google Scholar 

  75. P. Suryanarayana. On spectral quadrature for linear-scaling Density Functional Theory. Chem. Phys. Lett.584, 182–187 (2013).

    Article  Google Scholar 

  76. P. Suryanarayana. Optimized purification for density matrix calculation. Chem. Phys. Lett.555, 291–295 (2013).

    Article  Google Scholar 

  77. P. Suryanarayana. On nearsightedness in metallic systems for \(\mathcal {O}(N)\) Density Functional Theory calculations: A case study on aluminum. Chem. Phys. Lett.679, 146–151 (2017).

    Google Scholar 

  78. P. Suryanarayana, K. Bhattacharya and M. Ortiz. Coarse-graining Kohn–Sham Density Functional Theory. J. Mech. Phys. Solids61(1), 38–60 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  79. P. Suryanarayana, P.P. Pratapa, A. Sharma and J.E. Pask. SQDFT: Spectral Quadrature method for large-scale parallel \(\mathcal {O}(N)\) Kohn–Sham calculations at high temperature. Comput. Phys. Commun.224, 288–298 (2018).

    Google Scholar 

  80. E.B. Tadmor, M. Ortiz and R. Phillips. Quasicontinuum analysis of defects in solids. Philos. Mag. A73(6), 1529–1563 (1996).

    Article  Google Scholar 

  81. L.N. Trefethen. Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev.50(1), 67–87 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  82. L.N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition. SIAM (2019).

    Google Scholar 

  83. E. Tsuchida and M. Tsukada. Electronic-structure calculations based on the finite-element method. Phys. Rev. B52, 5573–5578 (1995).

    Article  Google Scholar 

  84. E. Tsuchida and M. Tsukada. Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B54, 7602–7605, Sep. (1996).

    Google Scholar 

  85. P. Tzanetakis, J. Hillairet and G. Revel. The formation energy of vacancies in aluminium and magnesium. Phys. Status Solidi B75(2), 433–439 (1976).

    Article  Google Scholar 

  86. M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H.V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus and W. de Jong. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun.181(9), 1477–1489 (2010).

    Article  MATH  Google Scholar 

  87. W. Van Assche. Padé and Hermite-Padé approximation and orthogonality. Surv. in Approx. Theory2, 61–91 (2006).

    MathSciNet  MATH  Google Scholar 

  88. D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B41, 7892–7895, Apr. (1990).

    Google Scholar 

  89. A. Vehanen and K. Rytsölä. Proceedings of the International School of Physics “Enrico Fermi,” Course LXXXIII, Varenna 1981, p. 659, North Holland, Amsterdam (1983)

    Google Scholar 

  90. X.-C. Wang, T. Blesgen, K. Bhattacharya and M. Ortiz. A Variational Framework for Spectral Approximations of Kohn–Sham Density Functional Theory. Arch. Ration. Mech. Anal.221(2), 1035–1075 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  91. C. Woodward. First-principles simulations of dislocation cores. Mater. Sci. Eng. A400–401, 59–67 (2005).

    Article  Google Scholar 

  92. C.J. Wu, P.C. Myint, J.E. Pask, C.J. Prisbrey, A.A. Correa, P. Suryanarayana and J. B. Varley. Development of a multiphase beryllium equation of state and physics-based variations. J. Phys. Chem. A125(7), 1610–1636 (2021).

    Article  Google Scholar 

  93. C. Xianhua, G. Yuxiao and P. Fusheng. Research progress in magnesium alloys as functional materials. Rare Metal Mater. Eng.45, 2269–2274 (2016).

    Article  Google Scholar 

  94. Q. Xu, A. Sharma and P. Suryanarayana. M-SPARC: Matlab-simulation package for ab-initio real-space calculations. SoftwareX11, 100423 (2020).

    Article  Google Scholar 

  95. S. Yamakawa and S.-a. Hyodo. Gaussian finite-element mixed-basis method for electronic structure calculations. Phys. Rev. B71, 035113 Jan. (2005).

    Google Scholar 

  96. S. Zhang, A. Lazicki, B. Militzer, L.H. Yang, K. Caspersen, J.A. Gaffney, M.W. Däne, J.E. Pask, W.R. Johnson, A. Sharma, et al. Equation of state of boron nitride combining computation, modeling, and experiment. Phys. Rev. B99(16), 165103 (2019).

    Google Scholar 

  97. X. Zhang, G. Lu and W. Curtin. Multiscale quantum/atomistic coupling using constrained density functional theory. Phys. Rev. B87, 054113 (2013).

    Article  Google Scholar 

  98. Y. Zhou, Y. Saad, M.L. Tiago and J.R. Chelikowsky. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys. Rev. E74, 066704 Dec. (2006).

    Google Scholar 

  99. Y. Zhou, Y. Saad, M.L. Tiago and J.R. Chelikowsky. Self-consistent-field calculations using Chebyshev-filtered subspace iteration. J. Comput. Phys.219(1), 172–184 Nov. (2006).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Phani Motamarri for sharing the unpublished results shown in Table 12.1. We acknowledge the help of Arpit Bhardwaj, Sambit Das and Xin Jing in running some of the DFT-FE and SQ simulations, and generating the corresponding figures. KB, MO and MP acknowledge the support of the Army Research Laboratory under Cooperative Agreement Number W911NF-12-2-0022. VG acknowledges the support of the U.S. Department of Energy, Office of Science through grants DE-SC0008637 and DE-SC0017380. VG also gratefully acknowledges the support of the Army Research Office through the DURIP grant W911NF1810242. PS acknowledges support of the U.S. Department of Energy, Office of Science through grant DE-SC0019410. The computations presented here were conducted on the Resnick High Performance Cluster at Caltech, the Great Lakes High Performance Cluster at the University of Michigan, the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory under contract DE-AC05-00OR22725, and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory, Department of Energy, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Bhattacharya .

Editor information

Editors and Affiliations

Appendix: Crystalline solids and the Cauchy–Born Rule

Appendix: Crystalline solids and the Cauchy–Born Rule

A Bravais lattice is a lattice with a single atom in its unit cell:

$$\displaystyle \begin{aligned} {\mathcal L}_B (a_i,o) = \{r \in {\mathbb R}^3: r = \sum_{i=1}^3 \nu^i a_i, \ \nu_i \text{ integers} \} \end{aligned}$$

where a set of linearly independent vectors or lattice vectors\(\{a_i\}_{i=1}^3\) describes the unit cell, or translational symmetry, and o signifies the presence of an atom at the origin. A crystal (also called lattice with a basis) is a periodic arrangement of atoms (points) in \({\mathbb R}^3\) with a finite number M of atoms in the unit cell. It may be regarded as a union of P congruent Bravais lattices which are displaced from each other:

$$\displaystyle \begin{aligned} {\mathcal L} (a_i,p_\alpha) = \cup_{\alpha=1}^M {\mathcal L}_B (a_i,p_\alpha) \end{aligned}$$

where \(\{a_i\}_{i=1}^3\) are the lattice vectors and the shift vectors pα, α = 1, …, M describe the relative positions of the atoms within the unit cell. It is conventional to take p1 = o, but this is not necessary. The underlying Bravais lattice is often referred to as the skeletal lattice.

A crystalline solid is a restriction of a lattice to a domain \(\Omega \subset {\mathbb R}^3\). Let \(\{r_a\}_{a=1}^A\) denote the positions of the atoms in a crystalline solid \({\mathcal L} (a_i^0,p_\alpha ^0) \cap \Omega \) in the reference domain \(\Omega \subset {\mathbb R}^3\). As the solid deforms, the current position of the atoms are given by \(\{y_a\}_{a=1}^A \subset {\mathbb R}^3\). Let \(y: \Omega \to {\mathbb R}^3\) denote a smooth deformation that maps the positions of the underlying skeletal lattice, i.e., \(y_a = y (r_a) \ \forall \ r_a \in {\mathcal L}_B(a_i^0, p_1^0)\). We call y the macroscopic deformation. Now, if the scale of the lattice is small compared to the size of the domain, and if the deformation y varies slowly on the scale of the lattice, i.e., it may be approximated by an affine map of a scale large compared to that of ai, then at any r0 ∈ Ω, the current positions of the atoms in the neighborhood of y(r0) are arranged in a lattice \({\mathcal L} (a_i, q_\alpha )\) where

$$\displaystyle \begin{aligned} a_i = \nabla y (r_0) a_i^0. \end{aligned}$$

In other words, for moderate macroscopic deformations, the deformation gradient convects the lattice vectors. This is known as the Cauchy–Born rule. Note that the macroscopic deformation only constrains the skeletal Bravais lattice and the atoms are free to “shuffle” within the unit cell.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, K., Gavini, V., Ortiz, M., Ponga, M., Suryanarayana, P. (2023). Accurate Approximations of Density Functional Theory for Large Systems with Applications to Defects in Crystalline Solids. In: Cancès, E., Friesecke, G. (eds) Density Functional Theory. Mathematics and Molecular Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-22340-2_12

Download citation

Publish with us

Policies and ethics