Skip to main content

Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies

  • Chapter
  • First Online:
Emerging Contaminants and Plants

Abstract

Pesticides are noxious organic and inorganic compounds used to kill or restrict the population expansion of harmful organisms. Pesticides have been used for a long period to kill pests and protect crops. Pesticides have been in use since the early 1940s, when dichlorodiphenyltrichloroethane (DDT) was first launched, ushering in a new era in man’s struggle against pests and pathogens. Pesticide technologies have continued to generate a wide range of pesticides, providing adequate food supply to meet consumer demand, and these pesticides are considered an important tool for crop protection and growth, but they are harmful to the environment. Pesticide overuse can lead to biodiversity loss and destruction. Biodiversity is critical to human survival on our planet. Pesticides are harmful to a variety of creatures, including birds, aquatic animals, and mammals. Pesticides are a key source of anxiety for the long-term survival of our planet. This chapter will discuss the pesticide groups, their use, and impact on the environment. This chapter also discusses pesticide contamination and the long-term consequences of pesticides on the entire ecosystem. An alternative pest management and control strategy, such as integrated pest management (IPM), can be helpful to minimize the number and volume of pesticide treatments by integrating several control measures, like cultural control, the use of resistant genotypes, and physico-mechanical control along with chemical control. Furthermore, advances in biotechnology and nanotechnology may make it simpler to develop herbicides with fewer adverse effects or resistant genotypes along with a lower dose of herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah, N. Z., Ishaka, A., Samsuddin, N., Mohd Rus, R., & Mohamed, A. H. (2011). Chronic organophosphate pesticide exposure and coronary artery disease: Finding a bridge. IIUM Research. Invention and Innovation Exhibition, 223.

    Google Scholar 

  • Aekrathok, P., Songsri, P., Jongrungklang, N., & Gonkhamdee, S. (2021). Efficacy of post-emergence herbicides against important weeds of sugarcane in North-East Thailand. Agronomy, 2021(11), 429.

    Article  Google Scholar 

  • Agrawal, A., & Sharma, B. (2010). Pesticides induced oxidative stress in mammalian systems. International Journal of Biological and Medical Research, 1(3), 90–104.

    Google Scholar 

  • Ahemad, M., & Khan, M. (2011a). Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiologica et Immunologica Hungarica, 58(3), 169–187.

    Google Scholar 

  • Ahemad, M., & Khan, M. S. (2011b). Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. strain MRM6. Bulletin of Environmental Contamination and Toxicology, 86(4), 384–388.

    Google Scholar 

  • Ahemad, M., Khan, M. S., Zaidi, A., & Wani, P. A. (2009). Remediation of herbicides contaminated soil using microbes. Microbes in Sustainable Agriculture, 261(5), 1–84.

    Google Scholar 

  • Andersen, H. R., Wohlfahrt-Veje, C., DalgĂĄrd, C., Christiansen, L., Main, K. M., Nellemann, C., & Grandjean, P. (2012). Paraoxonase 1 polymorphism and prenatal pesticide exposure associated with adverse cardiovascular risk profiles at school age. PLoS One, 7(5), e36830.

    Article  CAS  Google Scholar 

  • Andrea, M. M., Peres, T. B., Luchini, L. C., & Pettinelli, A., Jr. (2000). Impact of long-term pesticide applications on some soil biological parameters. Journal of Environmental Science & Health Part B, 35(3), 297–307.

    Article  CAS  Google Scholar 

  • Ansari, S. M., Saquib, Q., Attia, S. M., Abdel-Salam, E. M., Alwathnani, H. A., Faisal, M., et al. (2018). Pendimethalin induces oxidative stress, DNA damage, and mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone-marrow cells. Histochemistry and Cell Biology, 149(2), 127–141.

    Article  CAS  Google Scholar 

  • Arinze, E., & Yubedee, A. G. (2000). Effect of fungicides on fusarium grain rot endoenzyme production in maize. Global Journal of Pure and Applied Sciences, 6(4), 629–634.

    Google Scholar 

  • Armstrong, J. L., Fenske, R. A., Yost, M. G., Galvin, K., Tchong-French, M., & Yu, J. (2013). Presence of organophosphorus pesticide oxygen analogs in air samples. Atmospheric Environment, 66, 145–150.

    Article  CAS  Google Scholar 

  • Arshad, M., Ullah, M. I., ÇaÄźatay, N. S., Abdullah, A., Dikmen, F., Kaya, C., & Khan, R. R. (2019). Field evaluation of water plant extracts on sucking insect pests and their associated predators in transgenic Bt cotton. Egyptian Journal of Biological Pest Control, 29(1), 1–6.

    Article  Google Scholar 

  • Avenot, H. F., Morgan, D. P., Quattrini, J., & Michailides, T. J. (2020). Resistance to thiophanate-methyl in Botrytis cinerea isolates from Californian vineyards and pistachio and pomegranate orchards. Plant Disease, 104(4), 1069–1075.

    Google Scholar 

  • Bahar, N. H., Lo, M., Sanjaya, M., Van Vianen, J., Alexander, P., Ickowitz, A., & Sunderland, T. (2020). Meeting the food security challenge for nine billion people in 2050: What impact on forests. Global Environmental Change, 62, 102056.

    Article  Google Scholar 

  • Baldwin, R. A., Salmon, T. P., Schmidt, R. H., & Timm, R. M. (2013). Wildlife pests of California agriculture: Regional variability and subsequent impacts on management. Crop Protection, 46, 29–37.

    Article  Google Scholar 

  • Band, P. R., Abanto, Z., Bert, J., Lang, B., Fang, R., Gallagher, R. P., & Le, N. D. (2011). Prostate cancer risk and exposure to pesticides in British Columbia farmers. The Prostate, 71(2), 168–183.

    Article  Google Scholar 

  • Baweja, P., Kumar, S., & Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. In Soil health (pp. 265–285). Springer.

    Google Scholar 

  • Begum, A., Alam, S. N., & Jalal Uddin, M. (2017). Management of pesticides: Purposes, uses, and concerns. In Pesticide residue in foods (pp. 53–86). Springer.

    Google Scholar 

  • Bhagobaty, R. K., & Malik, A. (2010). Utilization of chlorpyrifos as a sole source of carbon by bacteria isolated from wastewater irrigated agricultural soils in an industrial area of western Uttar Pradesh, India. Research Journal of Microbiology, 3(5), 292–307.

    Google Scholar 

  • Bhoite, R., Si, P., Liu, H., Xu, L., Siddique, K. H., & Yan, G. (2019). Inheritance of pre-emergent metribuzin tolerance and putative gene discovery through high-throughput SNP array in wheat (Triticum aestivum L.). BMC Plant Biology, 19(1), 1–12.

    Article  CAS  Google Scholar 

  • Boatman, N. D., Brickle, N. W., Hart, J. D., Milsom, T. P., Morris, A. J., Murray, A. W., & Robertson, P. A. (2004). Evidence for the indirect effects of pesticides on farmland birds. Ibis, 146, 131–143.

    Article  Google Scholar 

  • Campbell, S., Cook, S., Mortimer, L., Palmer, G., Sinclair, R., & Woolnough, A. P. (2012). To catch a starling: Testing the effectiveness of different trap and lure types. Wildlife Research, 39(3), 183–191.

    Article  Google Scholar 

  • Carriger, J. F., Rand, G. M., Gardinali, P. R., Perry, W. B., Tompkins, M. S., & Fernandez, A. M. (2006). Pesticides of potential ecological concern in sediment from South Florida canals: An ecological risk prioritization for aquatic arthropods. Soil and Sediment Contamination, 15(1), 21–45.

    Article  CAS  Google Scholar 

  • Chen, S. K., Edwards, C. A., & Subler, S. (2001a). A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Applied Soil Ecology, 18(1), 69–82.

    Article  CAS  Google Scholar 

  • Chen, S. K., Edwards, C. A., & Subler, S. (2001b). Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology and Biochemistry, 33(14), 1971–1980.

    Article  CAS  Google Scholar 

  • Cothran, R. D., Brown, J. M., & Relyea, R. A. (2013). Proximity to agriculture is correlated with pesticide tolerance: Evidence for the evolution of amphibian resistance to modern pesticides. Evolutionary Applications, 6(5), 832–841.

    Article  CAS  Google Scholar 

  • Cusumano, A., Harvey, J. A., Bourne, M. E., Poelman, E. H., & de Boer, J. G. (2020). Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests. Pest Management Science, 76(2), 432–443.

    Article  CAS  Google Scholar 

  • Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419.

    Article  CAS  Google Scholar 

  • Delaplane, K. S., Mayer, D. R., & Mayer, D. F. (2000). Crop pollination by bees. Cabi.

    Book  Google Scholar 

  • Dhaliwal, G. S., Singh, R., & Chhillar, B. S. (2016). Essentials of agricultural entomology. Kalyani Publishers.

    Google Scholar 

  • Dheer, V., Yadav, M., & Yadav, R. (2021). Effect of post emergence herbicides on weed density in wheat (Triticum aestivum L.). The Pharma Innovation Journal, 10(10), 440–443.

    CAS  Google Scholar 

  • Floch, C., Chevremont, A. C., Joanico, K., Capowiez, Y., & Criquet, S. (2011). Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via biolog® Ecoplates. European Journal of Soil Biology, 47(4), 256–263.

    Article  CAS  Google Scholar 

  • Folorunso, E. A., Roy, K., Gebauer, R., Bohatá, A., & Mraz, J. (2021). Integrated pest and disease management in aquaponics: A metadata-based review. Reviews in Aquaculture, 13(2), 971–995.

    Article  Google Scholar 

  • Gage, K. L., & Schwartz-Lazaro, L. M. (2019). Shifting the paradigm: An ecological systems approach to weed management. Agriculture, 9(8), 179.

    Article  Google Scholar 

  • Gentz, M. C., Murdoch, G., & King, G. F. (2010). Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biological Control, 52(3), 208–215.

    Article  Google Scholar 

  • Germany, P. A. N. (2012). Pesticide and health hazards: Facts and figures. PAN Germany—Pestizid Aktions-Netzwerk eV.

    Google Scholar 

  • Gibbs, K. E., Mackey, R. L., & Currie, D. J. (2009). Human land use, agriculture, pesticides and losses of imperiled species. Diversity and Distributions, 15(2), 242–253.

    Article  Google Scholar 

  • Gill, H. K., & Garg, H. (2014). Pesticide: environmental impacts and management strategies. Pesticides-toxic effects. Intech.

    Google Scholar 

  • Gill, J., Dong, J., Rose, C., Johnston, O., Landsberg, D., & Gill, J. (2013). The effect of race and income on living kidney donation in the United States. Journal of the American Society of Nephrology, 24(11), 1872–1879.

    Article  Google Scholar 

  • Haddi, K., Turchen, L. M., Viteri Jumbo, L. O., Guedes, R. N., Pereira, E. J., Aguiar, R. W., & Oliveira, E. E. (2020). Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Management Science, 76(7), 2286–2293.

    Article  CAS  Google Scholar 

  • Hussain, J., Ullah, R., ur Rehman, N., Khan, A. L., Muhammad, Z., Hussain, F., & Anwar, S. (2010). Endogenous transitional metal and proximate analysis of selected medicinal plants from Pakistan. Journal of Medicinal Plants Research, 4(3), 267–270.

    CAS  Google Scholar 

  • Ä°kizoÄźlu, Z. R. (2020). The use of semi-permeable membrane devices (SPMD) for the sampling of micropollutants in sea water and river basin (Master’s thesis). Fen Bilimleri EnstitĂĽsĂĽ.

    Google Scholar 

  • IRAC (2014) IRAC MoA Classification Scheme (Version 7.3.1). http://www.irac-online.org. Accessed Oct 2014.

  • Iqbal, N., Manalil, S., Chauhan, B. S., & Adkins, S. W. (2019). Investigation of alternate herbicides for effective weed management in glyphosate-tolerant cotton. Archives of Agronomy and Soil Science, 65(13), 1885–1899.

    Article  CAS  Google Scholar 

  • Jat, T. R., Ng, N., & San Sebastian, M. (2011). Factors affecting the use of maternal health services in Madhya Pradesh state of India: A multilevel analysis. International Journal for Equity in Health, 10(1), 1–11.

    Article  Google Scholar 

  • Karasali, H., Pavlidis, G., Marousopoulou, A., & Ambrus, A. (2017). Occurrence and distribution of trifluralin, ethalfluralin, and pendimethalin in soils used for long-term intensive cotton cultivation in central Greece. Journal of Environmental Science and Health, Part B, 52(10), 719–728.

    Article  CAS  Google Scholar 

  • Kashe, K., Ketumile, D., Kristiansen, P., Mahilo, C., & Moroke, T. (2020). Evaluation of pre-emergence herbicides for weed control in maize. Welwitschia International Journal of Agricultural Sciences, 2, 5–18.

    Google Scholar 

  • Khajavi, T. M., Avarseji, Z., Gholam Alipour Alamdari, E., & Biabani, A. (2019). Evaluating the effect of pendimethalin herbicide residue on wheat and barely. Journal of Plant Productions, 42(4), 483–494.

    Google Scholar 

  • Krupke, C. H., & Tooker, J. F. (2020). Beyond the headlines: The influence of insurance pest management on an unseen, silent entomological majority. Frontiers in Sustainable Food Systems, 4, 595855.

    Article  Google Scholar 

  • Lupwayi, N. Z., Harker, K. N., Clayton, G. W., O’Donovan, J. T., & Blackshaw, R. E. (2009). Soil microbial response to herbicides applied to glyphosate-resistant canola. Agriculture, Ecosystems & Environment, 129(1–3), 171–176.

    Article  CAS  Google Scholar 

  • Ma, X., Li, H., Xiong, J., Mehler, W. T., & You, J. (2019). Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos. Journal of Agricultural and Food Chemistry, 67(9), 2429–2436.

    Article  CAS  Google Scholar 

  • Macneale, K. H., Kiffney, P. M., & Scholz, N. L. (2010). Pesticides, aquatic food webs, and the conservation of Pacific salmon. Frontiers in Ecology and the Environment, 8(9), 475–482.

    Article  Google Scholar 

  • Mahajan, L., Verma, P. K., Raina, R., & Sood, S. (2018). Toxic effects of imidacloprid combined with arsenic: Oxidative stress in rat liver. Toxicology and Industrial Health, 34(10), 726–735.

    Article  CAS  Google Scholar 

  • Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In Plant, soil and microbes (pp. 253–269). Springer.

    Google Scholar 

  • Maqbool, R., Khan, B. A., Parvez, S., Nadeem, M. A., Hassan, A., Qamar, J., Nawaz, A., Adnan, M., Khalid, R., & Usman, M. (2021a). Exploring the allelopathic and hermetic effect of khatami (Altheae officinalis) on emergence and seedling growth of radish (Raphanus sativus). Pakistan Journal of Weed Science Research, 27(3), 321–330.

    Article  Google Scholar 

  • Maqbool, R., Khan, B. A., Parvez, S., Nadeem, M. A., Ud Din, M. M., Qamar, J., & Khalid, B. (2021b). Identifying the hermetic potential of khatami (Altheae officinalis) emergence and seedling growth of wild pea (Pisum sativum subsp. elatius). Pakistan Journal of Weed Science Research, 27(3), 331–340.

    Article  Google Scholar 

  • Maqbool, R., Khan, B. A., Nadeem, M. A., Parvez, S., Amin, M. M., Qamar, J., Hassan, A., Elahi, M. A., Haider, J., Irfan M. & Shahid M. G. (2021c). Allelopathic effect of Cinnamomum verum on emergence and seedling growth of radish. Pakistan Journal of Weed Science Research, 27(4), 485–494.

    Google Scholar 

  • Mehdizadeh, M., Mushtaq, W., Siddiqui, S. A., Ayadi, S., Kaur, P., Yeboah, S., & Tampubolon, K. (2021). Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants. Reviews in Agricultural Science, 9, 157–167.

    Article  Google Scholar 

  • Meyers, L. A., & Bull, J. J. (2002). Fighting change with change: Adaptive variation in an uncertain world. Trends in Ecology & Evolution, 17(12), 551–557.

    Article  Google Scholar 

  • Mishra, R. K., Mohammad, N., & Roychoudhury, N. (2016). Soil pollution: Causes, effects and control. Van Sangyan, 3(1), 1–14.

    CAS  Google Scholar 

  • Mokbel, E. S., & Huesien, A. (2020). Sublethal effects of emamectin benzoate on life table parameters of the cotton leafworm, Spodoptera littoralis (Boisd.). Bulletin of the National Research Centre, 44(1), 1–8.

    Article  Google Scholar 

  • Moo-Muñoz, A. J., AzorĂ­n-Vega, E. P., RamĂ­rez-Durán, N., & Moreno-PĂ©rez, P. A. (2021). Evaluation of the cytotoxic and genotoxic potential of the captan-based fungicides, chlorothalonil-based fungicides and methyl thiophanate-based fungicides in human fibroblasts BJ. Journal of Environmental Science and Health, Part B, 56(10), 877–883.

    Article  Google Scholar 

  • Mostafalou, S., Abdollahi, M., Eghbal, M. A., & Kouzehkonani, N. S. (2012). Protective effect of NAC against malathion-induced oxidative stress in freshly isolated rat hepatocytes. Advanced Pharmaceutical Bulletin, 2(1), 79–87.

    Google Scholar 

  • Nadeem, M., Bahadar, S., Gull, A. A., & Iqbal, U. (2020a). Are women eco-friendly? Board gender diversity and environmental innovation. Business Strategy and the Environment, 29(8), 3146–3161.

    Article  Google Scholar 

  • Nadeem, M. A., Khan, B. A., Afzal, S., Khan, M. A., Abbas, T., Javaid, M. M., Amin, M. M., Farooq, N., & Aziz, A. (2020b). Effect of aqueous extract of Carthamus tinctorius L. ongermination and initial seedling growth of Oryza punctata L. Pakistan Journal of Weed Science Research, 26(3), 331–342.

    Google Scholar 

  • Nadeem, M. A., Khan, B. A., Afzal, S., Aziz, A., Maqbool, R., Amin, M. M., & Adnan, M. (2020c). Allelopathic effects of aqueous extracts of Carthamus tinctorius L. on emergence and seedling growth of Echinochloa crus-galli L. Pakistan Journal of Weed Science Research, 26(3), 365–379.

    Google Scholar 

  • Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M. H., Mehmood, M., & Zhao, W. (2021a). Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chemical Engineering Journal, 409, 128205.

    Article  CAS  Google Scholar 

  • Nadeem, M. A., Khan, B. A., Afzal, S., Maqbool, R., Waheed, H., Nijabat, A., & Umer, H. (2021b). Allelopathic effects of Papaver somniferum on germination and initial seedling growth of Echinochloa cruss-galli. Pakistan Journal of Weed Science Research, 27(2), 239–252.

    Article  Google Scholar 

  • Nadeem, M. A., Khan, B. A., Anwar, S., Maqbool, R., Amin, M. M., Aziz, A., & Nijabat, A. (2021c). Allelopathic potential of aqueous extracts of sow thistle weed on emergence and seedling growth of red rice. Pakistan Journal of Weed Science Research, 27(2), 201–212.

    Article  Google Scholar 

  • Ngin, C., Suon, S., Tanaka, T., Yamauchi, A., Kawakita, K., & Chiba, S. (2017). Impact of insecticide applications on arthropod predators and plant feeders in Cambodian rice fields. Phytobiomes, 1(3), 128–137.

    Article  Google Scholar 

  • Niu, C., Wang, C., Wu, G., Yang, J., Wen, Y., Meng, S., & An, L. (2020). Toxic effects of the Emamectin Benzoate exposure on cultured human bronchial epithelial (16HBE) cells. Environmental Pollution, 257, 113618.

    Article  CAS  Google Scholar 

  • Njeri, D. S. (2020). Seasonal diversity and abundance of insect pollinators as influenced by farming practices in cowpea and cucumber cropping systems in Kikome, Makueni County, Kenya (Doctoral dissertation). JKUAT-AGRICULTURE.

    Google Scholar 

  • Olson, K. R., & Cihacek, L. (2020). The fate of Agent Blue, the arsenic-based herbicide, used in South Vietnam during the Vietnam War. Open Journal of Soil Science, 10(11), 518–577.

    Article  CAS  Google Scholar 

  • Park, W., Park, S., Lim, W., & Song, G. (2021). Bifenthrin reduces pregnancy potential via induction of oxidative stress in porcine trophectoderm and uterine luminal epithelial cells. Science of the Total Environment, 784, 147143.

    Article  CAS  Google Scholar 

  • Pelosi, C., Joimel, S., & Makowski, D. (2013). Searching for a more sensitive earthworm species to be used in pesticide homologation tests–a meta-analysis. Chemosphere, 90(3), 895–900.

    Article  CAS  Google Scholar 

  • Quintaneiro, C., Soares, A. M. V. M., & Monteiro, M. S. (2018, March). Effects of the herbicides linuron and S-metolachlor on Perez’s frog embryos. Chemosphere, 194, 595–601. https://doi.org/10.1016/j.chemosphere.2017.11.171. Epub 2017 Nov 29. PMID: 29241134.

  • Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657.

    Article  CAS  Google Scholar 

  • Rashid, A., De Zoysa, A., Lodh, S., & Rudkin, K. (2010). Board composition and firm performance: Evidence from Bangladesh. Australasian Accounting, Business and Finance Journal, 4(1), 76–95.

    Google Scholar 

  • Reinecke, S. A., & Reinecke, A. J. (2007). The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Ecotoxicology and Environmental Safety, 66(2), 244–251.

    Article  CAS  Google Scholar 

  • Richter, R., & Schläpfer, D. (2002). Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. International Journal of Remote Sensing, 23(13), 2631–2649.

    Article  Google Scholar 

  • Riggi, L. G., Raderschall, C. A., & Lundin, O. (2022). Insect pest damage increases faba bean (Vicia faba) yield components but only in the absence of insect pollination. Ecology and Evolution, 12(3), e8686.

    Google Scholar 

  • Rohr, J. R. (2021). The Atrazine saga and its importance to the future of toxicology, science, and environmental and human health. Environmental Toxicology and Chemistry, 40(6), 1544–1558.

    Article  CAS  Google Scholar 

  • Samir, D., Selma, R. M. O., & Asma, S. (2020). The effect of herbicide metribuzin on environment and human: A systematic review. Pharmaceutical and Biosciences Journal, 10–15.

    Google Scholar 

  • Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. Toxics, 9(8), 177.

    Article  Google Scholar 

  • Saravi, S. S. S., & Shokrzadeh, M. (2011). Role of pesticides in human life in the modern age: A review. In Pesticides in the Modern World-Risks and Benefits (pp. 3–12). Intech.

    Google Scholar 

  • Sarkar, S., Gil, J. D. B., Keeley, J., & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. European Union.

    Google Scholar 

  • Sebiomo, A., Ogundero, V. W., & Bankole, S. A. (2011). Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. African Journal of Biotechnology, 10(5), 770–778.

    CAS  Google Scholar 

  • Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International journal of agriculture, environment and biotechnology, 10(6), 675–680.

    Article  Google Scholar 

  • Shilpakar, O., Karki, B., & Rajbhandari, B. (2020). Pretilachlor poisoning: A rare case of a herbicide masquerading as organophosphate toxicity. Clinical Case Reports, 8(12), 3507–3509.

    Article  Google Scholar 

  • SkendĹľić, S., Zovko, M., Ĺ˝ivković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440.

    Article  Google Scholar 

  • Sofo, A., Scopa, A., Dumontet, S., Mazzatura, A., & Pasquale, V. (2012). Toxic effects of four sulphonylureas herbicides on soil microbial biomass. Journal of Environmental Science and Health, Part B, 47(7), 653–659.

    Article  CAS  Google Scholar 

  • Song, X., Wang, X., Liao, G., Pan, Y., Qian, Y., & Qiu, J. (2021). Toxic effects of fipronil and its metabolites on PC12 cell metabolism. Ecotoxicology and Environmental Safety, 224, 112677.

    Article  CAS  Google Scholar 

  • Speck-Planche, A., Kleandrova, V. V., Luan, F., & Cordeiro, M. N. D. (2012). Rational drug design for anti-cancer chemotherapy: Multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorganic and Medicinal Chemistry, 20(15), 4848–4855.

    Article  CAS  Google Scholar 

  • Srinivasulu, M., Mohiddin, G. J., Madakka, M., & Rangaswamy, V. (2012). Effect of pesticides on the population of Azospirillum sp. and on ammonification rate in two soils planted to groundnut (Arachis hypogaea L.). Tropical Ecology, 53(1), 93–104.

    CAS  Google Scholar 

  • Sultana, S., Kourakis, I., & Hellberg, M. A. (2012). Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas. Plasma Physics and Controlled Fusion, 54(10), 105016.

    Article  Google Scholar 

  • Tabashnik, B. E., Van Rensburg, J. B. J., & Carrière, Y. (2009). Field-evolved insect resistance to Bt crops: Definition, theory, and data. Journal of Economic Entomology, 102(6), 2011–2025.

    Article  CAS  Google Scholar 

  • Tandon, S. (2019). Degradation of fenoxaprop-p-ethyl and its metabolite in soil and wheat crops. Journal of Food Protection, 82(11), 1959–1964.

    Article  CAS  Google Scholar 

  • Temegne, N. C., Ngome, A. F., Agendia, A. P., & Youmbi, E. (2021). Agroecology for agricultural soil management. In Sustainable intensification for agroecosystem services and management (pp. 267–321). Springer.

    Google Scholar 

  • Thi Hue, N., Nguyen, T. P. M., Nam, H., & Hoang Tung, N. (2018). Paraquat in surface water of some streams in Mai Chau Province, the Northern Vietnam: Concentrations, profiles, and human risk assessments. Journal of Chemistry, 2018, 1.

    Article  Google Scholar 

  • Tomar, S. S., Naresh, R. K., Chauhan, S. V. S., & Yadav, A. (2019). Effect of herbicides combination for control of different weed flora in transplanted rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 8(6), 786–789.

    CAS  Google Scholar 

  • Triques, M. C., Oliveira, D., Goulart, B. V., Montagner, C. C., EspĂ­ndola, E. L. G., & de Menezes-Oliveira, V. B. (2021). Assessing single effects of sugarcane pesticides fipronil and 2, 4-D on plants and soil organisms. Ecotoxicology and Environmental Safety, 208, 111622.

    Article  CAS  Google Scholar 

  • Ullah, F., Gul, H., Desneux, N., Qu, Y., Xiao, X., Khattak, A. M., et al. (2019). Acetamiprid-induced hormetic effects and vitellogenin gene (Vg) expression in the melon aphid, Aphis gossypii. Entomol Gen, 39(3–4), 259–270.

    Google Scholar 

  • Vasileiadis, V. P., Sattin, M., Otto, S., Veres, A., Pálinkás, Z., Ban, R., & Kiss, J. (2011). Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management. Agricultural Systems, 104(7), 533–540.

    Article  Google Scholar 

  • Verma, S. K., Maurya, A. C., & Kumar, S. (2018). Effect of crop establishment methods and weed management practices on narrow leaf weeds in kharif maize (Zea mays L.). Crop Research, 53(3–4), 123–126.

    Google Scholar 

  • Wumuerhan, P., Yuntao, J., & Deying, M. (2020). Effects of exposure to imidacloprid direct and poisoned cotton aphids Aphis gossypii on ladybird Hippodamia variegata feeding behavior. Journal of Pesticide Science, D19-022.

    Google Scholar 

  • Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim, C., & Szymanski, B. K. (2011). Social consensus through the influence of committed minorities. Physical Review E, 84(1), 011130.

    Article  CAS  Google Scholar 

  • Yaghoubi, B., Abadian, H., Pouramir, F., & Mansourpour, F. (2020). Evaluating the efficacy of new slow released herbicide pyrazosulfuron-ethyl+ pretilachlor in weed control in transplanted rice. Cereal Research, 10(2), 181–192.

    Google Scholar 

  • Yaman, M., & NalbantoÄźlu, B. (2020). Investigation of the effects of the fenoxaprop-p-ethyl herbicide and salicylic acid on the ascorbic acid and vitamin B6 vitamers in wheat leaves. Journal of Plant Growth Regulation, 39(2), 729–737.

    Article  CAS  Google Scholar 

  • Yasmin, S., & D’Souza, D. (2010). Effects of pesticides on the growth and reproduction of earthworm: a review. Applied and Environmental Soil Science, 2010.

    Google Scholar 

  • Zaller, J. G. (2020). Pesticide impacts on the environment and humans. In Daily poison (pp. 127–221). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, B.A. et al. (2023). Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_5

Download citation

Publish with us

Policies and ethics