Abstract
The increase in the world’s population in the twentieth century resulted in the subsequent increase in the demand for food. To enhance the constant supply of food for this large population and sustainable crop production, different types of agrochemicals such as fertilizers, pesticides, fungicides, and herbicides were used by farmers for decades. Pesticides are mainly categorized as herbicides, fungicides, and insecticides based on the target they killed. Pesticides and herbicides are designed to kill and prevent pests and unwanted weeds respectively. As their mode of action is not species specific, they often harm other organisms including crops in the agricultural field when used in excess amounts. Over time, insects and weeds become adapted and develop resistance to such chemicals, which necessitates the excessive amount of usage and development of new chemical compounds to protect crops. In many developing countries cheap compounds, such as dichloro-diphenyl-trichloroethane (DDT), hexachlorocyclohexane (HCH), and lindane are popular among farmers, even though they are environmentally persistent and have a toxic effect on soil flora and fauna. Thus, the pesticide and herbicide compounds have emerged as a new global concern owing to their several phytotoxic effects. Moreover, the development of leaf and crop growth rate, and the nutritive composition of seeds, specifically the content of proteins, fall sharply following pesticide treatment. The herbicides and pesticides cause several cytotoxic and genotoxic effects which ultimately challenge the stability of the plant genome through the production of reactive oxygen compounds. To combat these stress conditions, plants have evolved several biochemical, physiological, transcriptional, and epigenetic strategies that together help to maintain the growth and development of plants. In this present book chapter, we summarize the harmful effects of pesticides and herbicides on crop plants and the different strategies evolved by plants to combat these emerging stress compounds to sustain growth and eventually survivability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C., Kala, S., Kryeziu, T. L., Ifemeje, J. C., & Patrick-Iwuanyanwu, K. (2020). Pesticides, history, and classification. Academic Press. https://doi.org/10.1016/B978-0-12-819304-4.00003-8
Akashe, M. M., Pawade, U. V., & Nikam, A. V. (2018). Classification of pesticides: A review. International Journal of Research in Ayurveda and Pharmacy, 9, 144–150. https://doi.org/10.7897/2277-4343.094131
Aksoy, O., Deveci, A., Kizilirmak, S., & Akdeniz, G. B. (2013). Phytotoxic effect of quizalofop-P-ethyl on soybean (Glycine max L). Journal of Biological and Environmental Sciences, 7, 49–55.
Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6(11):1720–1731.
Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7
Ali, U., Syed, J. H., Malik, R. N., Katsoyiannis, A., Li, J., Zhang, G., & Jones, K. C. (2014). Organochlorine pesticides (OCPs) in South Asian region: A review. Science of the Total Environment, 476, 705–717.
Anitha, S. R., & Savitha, G. (2013). Impact of mancozeb stress on seedling growth, seed germination, chlorophyll and phenolic contents of rice cultivars. International Journal of Science and Research, 4(7), 292–296.
Asensi-Fabado, M. A., Amtmann, A., & Perrella, G. (2017). Plant responses to abiotic stress: The chromatin context of transcriptional regulation. Biochimica et Biophysica Acta, 1860, 106–122.
Badr, A., Zaki, H., Germoush, M. O., Tawfeek, A. Q., & El-Tayeb, M. A. (2013). Cytophysiological impacts of metosulam herbicide on Vicia faba plants. Acta Physiologiae Plantarum, 35(6), 1933–1941.
Bianchi, J., Fernandes, T. C. C., & MarinMorales, M. A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475–483.
Bohnenblust, E. W., Vaudo, A. D., Egan, J. F., Mortensen, D. A., & Tooker, J. F. (2016). Effects of the herbicide dicamba on nontarget plants and pollinator visitation. Environmental Toxicology and Chemistry, 35, 144–151.
Boutin, C., Aya, K., Carpenter, D., Thomas, P., & Rowland, O. (2012). Phytotoxicity testing for herbicide regulation: Shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Science of the Total Environment, 415, 79–92. https://doi.org/10.1016/j.scitotenv.2011.04.046
Boutin, C., Strandberg, B., Carpenter, D., Mathiassen, S. K., & Thomas, P. J. (2014). Herbicide impact on non‐target plant reproduction: What are the toxicological and ecological implications? Environmental Pollution, 185, 295–306.
Carpenter, D. J., Mathiassen, S. K., Boutin, C., Strandberg, B., Casey, C. S., & Damgaard, C. (2020). Effects of herbicides on flowering. Environmental Toxicology and Chemistry, 39(6), 1244–1256. https://doi.org/10.1002/etc.4712
Cui, J., Zhang, R., Wu, G. L., Zhu, H. M., & Yang, H. (2010). Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Archives of Environmental Contamination and Toxicology, 59(1), 100–108.
Cummins, I., Wortley, D. J., Sabbadin, F., He, Z., Coxon, C. R., Straker, H. E., Sellars, J. D., Knight, K., Edwards, L., Hughes, D., Kaundun, S. S., Hutchings, S. J., Steel, P. G., & Edwards, R. (2013). Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5812–5817. https://doi.org/10.1073/pnas.1221179110
Dalzell, S., & Mullen, B. (2004). Application of pesticides suppress foliar proanthocyanidin content in Leucaena species. Animal Feed Science and Technology, 113. https://doi.org/10.1016/j.anifeedsci.2003.10.016
De, A., Bose, R., Kumar, A., & Mozumdar, S. (2014). Targeted delivery of pesticides using biodegradable polymeric nanoparticles, XXIII, 99. https://doi.org/10.1007/978-81-322-1689-6
Délye, C. (2013). Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Management Science, 69(2), 176–187. https://doi.org/10.1002/ps.3318
Délye, C., Menchari, Y., Michel, S., Cadet, E., & Le Corre, V. (2013). A new insight into arable weed adaptive evolution: Mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Annals of Botany, 111(4), 681–691. https://doi.org/10.1093/aob/mct018
Deng, F. (2005). Effects of glyphosate, chlorsulfuron, and methyl jasmonate on growth and alkaloid biosynthesis of jimsonweed (Datura stramonium L.). Pesticide Biochemistry and Physiology, 82, 16–26. https://doi.org/10.1016/j.pestbp.2004.09.007
Devi, P., Kiranmai, V., & Padmavathi, T. (1991). Pesticide induced cytological abnormalities in Allium cepa L. Canadian Journal of Genetics and Cytology, 26, 13–18.
Doğramacı, M., Anderson, J. V., Chao, W. S., & Foley, M. E. (2014). Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns. Weed Science, 62, 217–229.
Doğramaci, M., Foley, M. E., Horvath, D. P., Hernandez, A. G., Khetani, R. S., Fields, C. J., Keating, K. M., Mikel, M. A., & Anderson, J. V. (2015). Glyphosate’s impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC Genomics, 16, 395. https://doi.org/10.1186/s12864-015-1627-9
Duke, S. O. (1990). Overview of herbicide mechanisms of action. Environmental Health Perspectives, 87, 263–271.
Dupont, Y. L., Strandberg, B., & Damgaard, C. (2018). Effects of herbicide and nitrogen fertilizer on non‐target plant reproduction and indirect effects on pollination in Tanacetum vulgare (asteraceae). Agriculture, Ecosystems and Environment, 262, 76–82.
Egan, J. F., Bohnenblust, E., Goslee, S., Mortensen, D., & Tooker, J. (2014a). Herbicide drift can affect plant and arthropod communities. Agriculture, Ecosystems and Environment, 185, 77–87. https://doi.org/10.1016/j.agee.2013.12.017
Egan, J. F., Graham, I. M., & Mortensen, D. A. (2014b). A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape. Environmental Toxicology and Chemistry, 33, 696–702.
Eleftheriou, E. P., & Bekiari, E. (2000). Ultra structural effects of the herbicide chlorpropham (CIPC) in root tip cells of wheat. Plant and Soil, 226, 11–19. https://doi.org/10.1023/A:1026409027223
Fatma, F., Kamal, A., & Srivastava, A. (2018). Exogenous application of salicylic acid mitigates the toxic effect of pesticides in Vigna radiata (L.) Wilczek. Journal of Plant Growth Regulation, 37(4), 1185–1194.
Garrat, M. P. D., Breeze, T. D., Jenner, N., Polce, C., Biesmeijer, J. C., & Potts, S. G. (2014). Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 184, 34–40.
Gavrilescu, M. (2005). Fate of pesticides in the environment. Engineering in Life Sciences, 5, 497–526.
Gill, H. K., & Garg, H. (2014). Pesticides: environmental impacts and management strategies. In M. L. Larramendy and S. Soloneski (Ed.). Pesticides. IntechOpen
Goh, W. L., Yiu, P.-H., Wong, S.-C., & Rajan, A. (2011). Safe use of chlorpyrifos for insect pest management in leaf mustard (Brassica juncea L. Coss.). Journal of Food, Agriculture and Environment, 9(3/4), 1064–1066.
Gressel, J. (1995). Catch 22 – Mutually exclusive strategies for delaying/preventing polygenically vs. monogenically inherited resistances. In N. Ragsdale (Ed.), Options 2000 (pp. 330–349). American Chemical Society.
Gressel, J. (2011). Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Management Science, 67, 253–257.
Gressel, J. (2015). Perspective: Consider removing ‘inherited’ from definitions of pesticide resistance. Outlooks on Pest Management, 26, 220–222.
Han, H. J., Peng, R. H., Zhu, B., Fu, X. Y., Zhao, W., Shi, B., & Yao, Q. H. (2014). Gene expression profiles of Arabidopsis under the stress of methyl viologen: A microarray analysis. Molecular Biology Reports, 41, 7089–7102.
Hassan, N. M., & Alla, M. M. N. (2005). Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiologiae Plantarum, 27(4), 429–438.
Hatterman‐Valenti, H., & Mayland, P. (2005). Annual flower injury from sublethal rates of dicamba, 2,4‐d, and premixed 2,4‐d + mecoprop + dicamba. Horticulture Science, 40, 680–684.
Heap, I. (1988). Resistance to herbicides in annual ryegrass (Lolium rigidum). PhD Thesis, University Waite Agriculture Institute, Adelaide, Australia.
Heap, I. (2018). International survey of herbicide resistant weeds. [WWW document] URL www.weedscience.org. Accessed 23 Jan 2019.
Hickey, J., & Krueger, W. (1974). Alachlor and 1,8-naphthalic anhydride effects on corn coleoptiles. Weed Science, 22(3), 250–252. https://doi.org/10.1017/S0043174500037000
Hoagland, R. E. (1989). Acifluorfen action on growth and phenolic metabolism in soybean (Glycine max) seedlings. Weed Science 37(6):743–747.
Iwakami, S., Endo, M., Saika, H., Okuno, J., Nakamura, N., Yokoyama, M., Watanabe, H., Toki, S., Uchino, A., & Inamura, T. (2014). Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiology, 165(2), 618–629. https://doi.org/10.1104/pp.113.232843
Jan, R., Asaf, S., Numan, M., Lubna, L., & Kim, K. M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11, 968. https://doi.org/10.3390/agronomy11050968
Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3–4), 90–100. https://doi.org/10.1515/intox-2016-0012
Kaur, R., Mavi, G., Raghav, S., & Khan, I. (2019). Pesticides classification and its impact on environment. International Journal of Current Microbiology and Applied Science, 8, 1889–1897. https://doi.org/10.20546/ijcmas.2019.803.224
Kerchev, P., Mühlenbock, P., Denecker, J., Morreel, K., Hoeberichts, F. A., Van Der Kelen, K., Vandorpe, M., Nguyen, L., Audenaert, D., & Van Breusegem, F. (2015). Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant, Cell & Environment, 38, 253–265.
Kilic, S., Duran, R. E., & Coskun, Y. (2015). Morphological and physiological responses of maize (Zea mays L.) seeds grown under increasing concentrations of chlorantraniliprole insecticide. Polish Journal of Environmental Studies, 24, 1069–1075.
Kim, G., Clarke, C. R., Larose, H., Tran, H. T., Haak, D. C., Zhang, L., Askew, S., Barney, J., & Westwood, J. H. (2017). Herbicide injury induces DNA methylome alterations in Arabidopsis. Peer J, 20(5), e3560. https://doi.org/10.7717/peerj.3560
Komives, T., & Casida, J. E. (1982). Diphenylether herbicides: Effects of acifluorfen on phenylpropanoid biosynthesis and phenylalanine ammonia lyase activity in spinach. Pesticide Biochemistry and Physiology, 18, 191.
Köster, J., Thurow, C., Kruse, K., Meier, A., Iven, T., Feussner, I., & Gatz, C. (2012). Xenobiotic and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 promoter. Plant Physiology, 159, 391–402.
Kumar, S. (2010). Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L. Cytology and Genetics, 44, 79–87. https://doi.org/10.3103/S0095452710020027
Lamsal, K., Ghimire, B., Sharma, P., Ghimiray, A., Kim, S. W., Yu, C., Chung, I., Lee, Y., Kim, J. S., & Shakya, S. (2010). Genotoxicity evaluation of the insecticide ethion in root of Allium cepa L. African Journal of Biotechnology, 9, 4204–4210.
Lei, M. G., Zhang, H. M., Julian, R., Tang, K., Xie, S. J., & Zhu, J. K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proceedings of National Academy of Science USA, 112, 3553–3557.
Lu, Y. C., Luo, F., Pu, Z. J., Zhang, S., Huang, M. T., & Yang, H. (2016). Enhanced detoxification and degradation of herbicide atrazine by a group of O-methyltransferases in rice. Chemosphere 165:487–496.
Lydon, J., & Duke, S. O. (1989). Pesticide effects on secondary metabolism of higher plants. Pesticide Science, 25, 361–373.
Mahapatra, K., De, S., Banerjee, S., & Roy, S. (2019). Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum – graecum L.) seedlings. Journal of Hazardous Materials, 369, 362–374.
Menzyanova, N., Shishatskaya, E., Pyatina, S., & Volova, T. (2020). Cytological Effects of Herbicidal and Fungicidal Pesticides on Root Apex Meristem Cells of Triticum aestivum. Research Square (Pre Print)
Misra, S. G., & Mani, D. (1994). Adverse effects of pesticides. In S. G. Misra & D. Mani (Eds.), Agricultural pollution II. Ashish Publisher.
Moldes, C. A., Medici, L. O., Abrahao, O. S., Tsai, S. M., & Azevedo, R. A. (2008). Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiologiae Plantarum 30(4):469–479.
Moffett, J. O., Morton, H. L., & Macdonald, R. H. (1972). Toxicity of some herbicidal sprays to honey bees. Journal of Economic Entomology, 65, 32–36.
Morillo, E., & Villaverde, J. (2017). Advanced technologies for the remediation of pesticide contaminated soils. Science of the Total Environment, 586, 576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020
Moriarty, F. (1983). Ecotoxicology: the study of pollutants in ecosystems. Academic Press.
Mostafalou, S., & Abdollahi, M. (2012). Concerns of environmental persistence of pesticides and human chronic diseases. Clinical and Experimental Pharmacology, S5, e002. https://doi.org/10.4172/2161-1459.S5-e002
Nardemir, G., Agar, G., Arslan, E., & Erturk, F. A. (2015). Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theoretical and Experimental Plant Physiology, 27, 131–139.
Nayak, P., & Hitesh, S. (2021). Pesticides and Indian agriculture – A review. International Journal of Research, 9, 250–263.
Neve, P., & Powles, S. (2005). Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theoretical and Applied Genetics, 110, 1154–1166.
Niti, C., Sunita, S., Kamlesh, K., & Rakesh, K. (2013). Bioremediation: An emerging technology for remediation of pesticides. Research Journal of Chemistry and Environment, 17, 88–105.
Ortega, Y. K., & Pearson, D. E. (2011). Long-term effects of weed control with picloram along a gradient of spotted Knapweed invasion. Rangeland Ecology & Management, 64, 67–77. https://doi.org/10.2111/rem-d-10-00034.1
Ossowski, S., Schneeberger, K., Lucas-Lledó, J. I., Warthmann, N., Clark, R. M., Shaw, R. G., Weigel, D., & Lynch, M. (2010). The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327(5961), 92–94. https://doi.org/10.1126/science.1180677
Parween, T., Jan, S., & Fatma, M. T. (2012). Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. Journal of Environmental Science and Technology, 9(4), 605–612.
Pecinka, A., Abdelsamad, A., & Vu, G. T. (2013). Hidden genetic nature of epigenetic natural variation in plants. Trends in Plant Science, 18, 625–632. https://doi.org/10.1016/j.tplants.2013.07.005
Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A., & D’Amore, M. (1992). Environmental and human costs of pesticide use. Bioscience, 42, 750–760.
Powles, S. B., & Yu, Q. (2010). Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 61, 317–347. https://doi.org/10.1146/annurev-arplant-042809-112119
Rad, M. H., Aviazi, A. A., & Jagannath, S. (2011). Cytogenetic and biochemical effects of imazethapyr in wheat (Triticum duram). Turkish Journal of Biology, 35, 1–6. https://doi.org/10.3906/biy-1008-75
Radwan, D. E. M. (2012). Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pesticide Biochemistry and Physiology, 102, 182–188.
Rashid, B., Husnain, T., & Riazuddin, S. (2010). Herbicides and pesticides as potential pollutants: A global problem. Plant Adaption and Phytoremedation. https://doi.org/10.1007/978-90-481-9370-7_19
Rio, A. D., Bamberg, J., Centeno-Diaz, R., Salas, A., Roca, W., & Tay, D. (2012). Effects of the pesticide furadan on traits associated with reproduction in wild potato species. American Journal of Plant Sciences, 3, 1608–1612.
Rosell, G., Quero, C., Coll, J., & Guerrero, A. (2008). Biorational insecticides in pest management. Journal of Pesticide Science, 33, 103–121.
Ross, M. A., & Childs, D. (1995). Herbicide mode-of-action summary. WWW 1996.
Saladin, G., & Clément, C. (2005). Physiological effects of pesticides on cultivated crops. In Agriculture and soil pollution: New research (pp. 53–86). Nova Science Publishers.
Saladin, G., Magne, C., & Clement, C. (2003). Physiological stress responses of Vitis vinifera L. to the fungicides fludioxonil and pyrimethanil. Pesticide Biochemistry and Physiology, 77, 125–137.
Scarponi, L., Vischetti, C., & Hassan, N. M. (2002). Effects of propachlor on the formation of carbohydrates and proteins in Vicia faba and the response of its defence mechanisms. Agrochimica, XLVIE(3–4), 165–175.
Schmitz, R. J., Schultz, M. D., Lewsey, M. G., O’Malley, R. C., Urich, M. A., Libiger, O., Schork, N. J., & Ecker, J. R. (2011). Transgenerational epigenetic instability is a source of novel methylation variants. Science, 334(6054), 369–373. https://doi.org/10.1126/science.1212959
Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., Rehman, S., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147, 935–944.
Shakir, S. K., Kanwal, M., Murad, W., Rehman, Z., Rehman, S., Daud, M. K., & Azizullah, A. (2016). Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). Ecotoxicology, 25(2), 329–341.
Shakir, S. K., Irfan, S., Akhtar, B., Rehman, S. U., Daud, M. K., Taimur, N., & Azizullah, A. (2018). Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology, 27(7), 919–935. https://doi.org/10.1007/s10646-018-1916-6
Sharma, H. C., & Ortiz, R. (2002). Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology, 23, 111–135.
Sharma, I., Bhardwaj, R., & Pati, P. K. (2012). Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicology and Environmental Safety, 85, 72–81.
Sharma, I., Bhardwaj, R., & Pati, P. K. (2015). Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. Journal of Plant Growth Regulation, 34, 509–518.
Sharma, A., Kumar, V., Singh, R., Thukral, A. K., & Bhardwaj, R. (2016a). Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicology and Environmental Safety, 133, 195–201.
Sharma, A., Bhardwaj, R., Kumar, V., & Thukral, A. K. (2016b). GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environmental Science and Pollution Research, 23(14), 14518–14525.
Sharma, A., Kumar, V., Thukral, A. K., & Bhardwaj, R. (2016c). Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Indian Journal of Plant Physiology, 21, 70–75.
Sharma, A., Thakur, S., Kumar, V., Kanwar, M. K., Kesavan, A. K., & Thukral, A. (2016d). Pre-sowing seed treatment with 24-epibrassinolideameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front. Plant Science, 7, 1569. https://doi.org/10.3389/fpls.2016.01569
Sharma, A., Kumar, V., Kanwar, M. K., Thukral, A. K., & Bhardwaj, R. (2017a). Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L. Russian Journal of Plant Physiology, 64(4), 509–517.
Sharma, A., Thakur, S., Kumar, V., Kesavan, A. K., Thukral, A. K., & Bhardwaj, R. (2017b). 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biology, 17, 56. https://doi.org/10.1186/s12870-017-1003-9
Sharma, A., Kumar, V., Yuan, H., Kanwar, M. K., Bhardwaj, R., Thukral, A. K., & Zheng, B. (2018). Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Frontiers in Plant Science, 9, 1609. https://doi.org/10.3389/fpls.2018.01609
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019a). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1–16. https://doi.org/10.1007/s42452-019-1485-1
Sharma, A., Kumar, V., Thukral, A., & Bhardwaj, R. (2019b). Responses of plants to pesticide toxicity: An overview. Planta Daninha, 37. https://doi.org/10.1590/s0100-83582019370100065
Siddiqui, Z. S., & Ahmed, S. (2006). Combined effects of pesticide on growth and nutritive composition of soybean plants. Pakistan Journal of Botany, 38, 721–733.
Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biology, 4, 180–183.
Štajner, D., Popoviæ, M., & Štajner, M. (2003). Herbicide induced oxidative stress in lettuce, beans, pea seeds and leaves. Biologia Plantarum, 47(4), 575–579.
Subedi, M., Willenborg, C. J., & Vandenberg, A. (2017). Influence of harvest aid herbicides on seed germination, seedling vigor and milling quality traits of red lentil (Lens culinaris L.). Frontier Plant Science, 8, 311. https://doi.org/10.3389/fpls.2017.00311
Tan, W., Li, Q., & Zhai, H. (2012). Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen. Pesticide Biochemistry and Physiology, 103, 210–218.
Tang, Q., Liang, G. F., Lu, X. L., & Ding, S. Y. (2014). Effects of corridor networks on plant species composition and diversity in an intensive agriculture landscape. Chinese Geographical Science, 24, 93–103. https://doi.org/10.1007/s11769-014-0659-4
Tomer, N. (2013). Determination of chlorinated pesticide in vegetables, cereals and pulses by gas chromatography in east national capital region, Delhi, India. Research Journal of Agriculture and Forestry Science, 1, 27–28.
Tort, N., Oztork, I., & Guvensen, A. (2005). Effects of some fungicides on pollen morphology and anatomy of tomato (Lycopersicon esculentum mill.). Pakistan Journal of Botany, 37, 23–30.
Truta, E., Vochita, G., & Rosu, C. M. (2011). Evaluation of roundup-induced toxicity on genetic material and on length growth of barley seedlings. Acta Biologica Hungarica, 62, 290–301. https://doi.org/10.1556/ABiol.62.2011.3.8
Vats, S. (2015). Herbicides: History, classification and genetic manipulation of plants for herbicide resistance. Sustainable Agriculture Reviews 15 pp 153–192. https://doi.org/10.1007/978-3-319-09132-7_3
Velini, E. D., Trindade, M. L. B., Barberis, L. R. M., & Duke, S. O. (2010). Growth regulation and other secondary effects of herbicides. Weed Science, 58(3), 351–354. http://www.jstor.org/stable/40891108
Vila-Aiub, M. M., & Ghersa, C. M. (2005). Building up resistance by recurrently exposing target plants to sublethal doses of herbicide. European Journal of Agronomy, 22, 195–207.
Willing, E. M., Piofczyk, T., Albert, A., Winkler, J. B., Schneeberger, K., & Pecinka, A. (2016). UVR2ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nature Communications, 7, 1–9.
Wright, J. P. (1994). Use of membrane potential measurement to study mode of action of diclofopmethyl. Weed Science, 42, 285–292.
Xia, X. J., Huang, Y. Y., Wang, L., Huang, L. F., Yu, W. L., Zhou, Y. H., & Yu, J. Q. (2006). Pesticides induced depression of photosynthesis was alleviated by 24-epi-brassinolide pre-treatment in Cucumis sativus L. Pesticide Biochemistry and Physiology, 86, 42–48.
Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant physiology 150(2):801–814.
Zacharia, Z., & Tano, J. (2011). Identity, physical and chemical properties of pesticides. In Pesticides in the modern world – Trends in pesticides analysis. Intech Open. https://doi.org/10.5772/17513
Zaka, S. M., Iqbal, N., Saeed, Q., Akrem, A., Batool, M., Khan, A. A., Anwar, A., Bibi, M., Azeem, S., Rizvi, D. E., Bibi, R., Khan, K. A., Ghramh, H. A., Ansari, M. J., & Latif, S. (2019). Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae). Saudi Journal of Biological Science, 26(7), 1767–1771. https://doi.org/10.1016/j.sjbs.2018.05.012
Zhang, Q., Liang, M., Liu, Y., Yang, C., Zeng, J., Qin, J., & Liao, Z. (2021). Development of homozygous transgenic Atropa belladonna plants with glyphosate resistance and high-yield scopolamine using metabolic engineering. Industrial Crops and Products 171:113953.
Zhou, Y., Xia, X., Yu, G., Wang, J., Wu, J., Wang, M., Yang, Y., Shi, K., Yu, Y., Chen, Z., Gan, J., & Yu, J. (2015). Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 5, 9018.
Acknowledgments
The authors gratefully acknowledge the Council of Scientific and Industrial Research, Govt. of India, (Ref. No. 38(1587)/16/EMR-II, dated: 17/05/2016 to SR), UGC, Govt. of India (Start-Up research grant No.F.30-158/2015 (BSR), and SERB, DST, Govt of India (Ref. No. ECR/2016/000539 to SR) for providing financial support for performing research related to the topic discussed in this review. SB is thankful to CSIR, Govt. of India (09/025(0261)/2018-EMR-I) for the research fellowship. MM (DST/INSPIRE Fellowship/2017/IF17001) and SN (DST/INSPIRE Fellowship/2021/IF200219) are thankful for the DST-INSPIRE fellowship. PR is thankful to UGC (715/(CSIR-UGC NET JUNE 2019)), Govt. of India for the research fellowship. We apologize to those authors whose work could not be cited owing to space limitations.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Banerjee, S., Mitra, M., Roy, P., Nandi, S., Roy, S. (2023). Multiple Adaptation Strategies of Plants to Mitigate the Phytotoxic Effects of Diverse Pesticides and Herbicides. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-22269-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22268-9
Online ISBN: 978-3-031-22269-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)