Skip to main content

Multiple Adaptation Strategies of Plants to Mitigate the Phytotoxic Effects of Diverse Pesticides and Herbicides

  • Chapter
  • First Online:
Emerging Contaminants and Plants

Abstract

The increase in the world’s population in the twentieth century resulted in the subsequent increase in the demand for food. To enhance the constant supply of food for this large population and sustainable crop production, different types of agrochemicals such as fertilizers, pesticides, fungicides, and herbicides were used by farmers for decades. Pesticides are mainly categorized as herbicides, fungicides, and insecticides based on the target they killed. Pesticides and herbicides are designed to kill and prevent pests and unwanted weeds respectively. As their mode of action is not species specific, they often harm other organisms including crops in the agricultural field when used in excess amounts. Over time, insects and weeds become adapted and develop resistance to such chemicals, which necessitates the excessive amount of usage and development of new chemical compounds to protect crops. In many developing countries cheap compounds, such as dichloro-diphenyl-trichloroethane (DDT), hexachlorocyclohexane (HCH), and lindane are popular among farmers, even though they are environmentally persistent and have a toxic effect on soil flora and fauna. Thus, the pesticide and herbicide compounds have emerged as a new global concern owing to their several phytotoxic effects. Moreover, the development of leaf and crop growth rate, and the nutritive composition of seeds, specifically the content of proteins, fall sharply following pesticide treatment. The herbicides and pesticides cause several cytotoxic and genotoxic effects which ultimately challenge the stability of the plant genome through the production of reactive oxygen compounds. To combat these stress conditions, plants have evolved several biochemical, physiological, transcriptional, and epigenetic strategies that together help to maintain the growth and development of plants. In this present book chapter, we summarize the harmful effects of pesticides and herbicides on crop plants and the different strategies evolved by plants to combat these emerging stress compounds to sustain growth and eventually survivability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C., Kala, S., Kryeziu, T. L., Ifemeje, J. C., & Patrick-Iwuanyanwu, K. (2020). Pesticides, history, and classification. Academic Press. https://doi.org/10.1016/B978-0-12-819304-4.00003-8

    Book  Google Scholar 

  • Akashe, M. M., Pawade, U. V., & Nikam, A. V. (2018). Classification of pesticides: A review. International Journal of Research in Ayurveda and Pharmacy, 9, 144–150. https://doi.org/10.7897/2277-4343.094131

    Article  CAS  Google Scholar 

  • Aksoy, O., Deveci, A., Kizilirmak, S., & Akdeniz, G. B. (2013). Phytotoxic effect of quizalofop-P-ethyl on soybean (Glycine max L). Journal of Biological and Environmental Sciences, 7, 49–55.

    Google Scholar 

  • Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6(11):1720–1731.

    Google Scholar 

  • Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  Google Scholar 

  • Ali, U., Syed, J. H., Malik, R. N., Katsoyiannis, A., Li, J., Zhang, G., & Jones, K. C. (2014). Organochlorine pesticides (OCPs) in South Asian region: A review. Science of the Total Environment, 476, 705–717.

    Article  Google Scholar 

  • Anitha, S. R., & Savitha, G. (2013). Impact of mancozeb stress on seedling growth, seed germination, chlorophyll and phenolic contents of rice cultivars. International Journal of Science and Research, 4(7), 292–296.

    Google Scholar 

  • Asensi-Fabado, M. A., Amtmann, A., & Perrella, G. (2017). Plant responses to abiotic stress: The chromatin context of transcriptional regulation. Biochimica et Biophysica Acta, 1860, 106–122.

    Article  CAS  Google Scholar 

  • Badr, A., Zaki, H., Germoush, M. O., Tawfeek, A. Q., & El-Tayeb, M. A. (2013). Cytophysiological impacts of metosulam herbicide on Vicia faba plants. Acta Physiologiae Plantarum, 35(6), 1933–1941.

    Article  CAS  Google Scholar 

  • Bianchi, J., Fernandes, T. C. C., & MarinMorales, M. A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475–483.

    Article  CAS  Google Scholar 

  • Bohnenblust, E. W., Vaudo, A. D., Egan, J. F., Mortensen, D. A., & Tooker, J. F. (2016). Effects of the herbicide dicamba on nontarget plants and pollinator visitation. Environmental Toxicology and Chemistry, 35, 144–151.

    Article  Google Scholar 

  • Boutin, C., Aya, K., Carpenter, D., Thomas, P., & Rowland, O. (2012). Phytotoxicity testing for herbicide regulation: Shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Science of the Total Environment, 415, 79–92. https://doi.org/10.1016/j.scitotenv.2011.04.046

    Article  CAS  Google Scholar 

  • Boutin, C., Strandberg, B., Carpenter, D., Mathiassen, S. K., & Thomas, P. J. (2014). Herbicide impact on non‐target plant reproduction: What are the toxicological and ecological implications? Environmental Pollution, 185, 295–306.

    Article  CAS  Google Scholar 

  • Carpenter, D. J., Mathiassen, S. K., Boutin, C., Strandberg, B., Casey, C. S., & Damgaard, C. (2020). Effects of herbicides on flowering. Environmental Toxicology and Chemistry, 39(6), 1244–1256. https://doi.org/10.1002/etc.4712

    Article  CAS  Google Scholar 

  • Cui, J., Zhang, R., Wu, G. L., Zhu, H. M., & Yang, H. (2010). Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Archives of Environmental Contamination and Toxicology, 59(1), 100–108.

    Article  CAS  Google Scholar 

  • Cummins, I., Wortley, D. J., Sabbadin, F., He, Z., Coxon, C. R., Straker, H. E., Sellars, J. D., Knight, K., Edwards, L., Hughes, D., Kaundun, S. S., Hutchings, S. J., Steel, P. G., & Edwards, R. (2013). Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5812–5817. https://doi.org/10.1073/pnas.1221179110

    Article  CAS  Google Scholar 

  • Dalzell, S., & Mullen, B. (2004). Application of pesticides suppress foliar proanthocyanidin content in Leucaena species. Animal Feed Science and Technology, 113. https://doi.org/10.1016/j.anifeedsci.2003.10.016

  • De, A., Bose, R., Kumar, A., & Mozumdar, S. (2014). Targeted delivery of pesticides using biodegradable polymeric nanoparticles, XXIII, 99. https://doi.org/10.1007/978-81-322-1689-6

  • Délye, C. (2013). Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Management Science, 69(2), 176–187. https://doi.org/10.1002/ps.3318

    Article  CAS  Google Scholar 

  • Délye, C., Menchari, Y., Michel, S., Cadet, E., & Le Corre, V. (2013). A new insight into arable weed adaptive evolution: Mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Annals of Botany, 111(4), 681–691. https://doi.org/10.1093/aob/mct018

    Article  CAS  Google Scholar 

  • Deng, F. (2005). Effects of glyphosate, chlorsulfuron, and methyl jasmonate on growth and alkaloid biosynthesis of jimsonweed (Datura stramonium L.). Pesticide Biochemistry and Physiology, 82, 16–26. https://doi.org/10.1016/j.pestbp.2004.09.007

    Article  CAS  Google Scholar 

  • Devi, P., Kiranmai, V., & Padmavathi, T. (1991). Pesticide induced cytological abnormalities in Allium cepa L. Canadian Journal of Genetics and Cytology, 26, 13–18.

    Google Scholar 

  • Doğramacı, M., Anderson, J. V., Chao, W. S., & Foley, M. E. (2014). Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns. Weed Science, 62, 217–229.

    Article  Google Scholar 

  • Doğramaci, M., Foley, M. E., Horvath, D. P., Hernandez, A. G., Khetani, R. S., Fields, C. J., Keating, K. M., Mikel, M. A., & Anderson, J. V. (2015). Glyphosate’s impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC Genomics, 16, 395. https://doi.org/10.1186/s12864-015-1627-9

    Article  CAS  Google Scholar 

  • Duke, S. O. (1990). Overview of herbicide mechanisms of action. Environmental Health Perspectives, 87, 263–271.

    Article  CAS  Google Scholar 

  • Dupont, Y. L., Strandberg, B., & Damgaard, C. (2018). Effects of herbicide and nitrogen fertilizer on non‐target plant reproduction and indirect effects on pollination in Tanacetum vulgare (asteraceae). Agriculture, Ecosystems and Environment, 262, 76–82.

    Article  CAS  Google Scholar 

  • Egan, J. F., Bohnenblust, E., Goslee, S., Mortensen, D., & Tooker, J. (2014a). Herbicide drift can affect plant and arthropod communities. Agriculture, Ecosystems and Environment, 185, 77–87. https://doi.org/10.1016/j.agee.2013.12.017

    Article  CAS  Google Scholar 

  • Egan, J. F., Graham, I. M., & Mortensen, D. A. (2014b). A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape. Environmental Toxicology and Chemistry, 33, 696–702.

    Article  CAS  Google Scholar 

  • Eleftheriou, E. P., & Bekiari, E. (2000). Ultra structural effects of the herbicide chlorpropham (CIPC) in root tip cells of wheat. Plant and Soil, 226, 11–19. https://doi.org/10.1023/A:1026409027223

    Article  CAS  Google Scholar 

  • Fatma, F., Kamal, A., & Srivastava, A. (2018). Exogenous application of salicylic acid mitigates the toxic effect of pesticides in Vigna radiata (L.) Wilczek. Journal of Plant Growth Regulation, 37(4), 1185–1194.

    Article  CAS  Google Scholar 

  • Garrat, M. P. D., Breeze, T. D., Jenner, N., Polce, C., Biesmeijer, J. C., & Potts, S. G. (2014). Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 184, 34–40.

    Article  Google Scholar 

  • Gavrilescu, M. (2005). Fate of pesticides in the environment. Engineering in Life Sciences, 5, 497–526.

    Article  CAS  Google Scholar 

  • Gill, H. K., & Garg, H. (2014). Pesticides: environmental impacts and management strategies. In M. L. Larramendy and S. Soloneski (Ed.). Pesticides. IntechOpen

    Google Scholar 

  • Goh, W. L., Yiu, P.-H., Wong, S.-C., & Rajan, A. (2011). Safe use of chlorpyrifos for insect pest management in leaf mustard (Brassica juncea L. Coss.). Journal of Food, Agriculture and Environment, 9(3/4), 1064–1066.

    CAS  Google Scholar 

  • Gressel, J. (1995). Catch 22 – Mutually exclusive strategies for delaying/preventing polygenically vs. monogenically inherited resistances. In N. Ragsdale (Ed.), Options 2000 (pp. 330–349). American Chemical Society.

    Google Scholar 

  • Gressel, J. (2011). Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Management Science, 67, 253–257.

    Article  CAS  Google Scholar 

  • Gressel, J. (2015). Perspective: Consider removing ‘inherited’ from definitions of pesticide resistance. Outlooks on Pest Management, 26, 220–222.

    Article  Google Scholar 

  • Han, H. J., Peng, R. H., Zhu, B., Fu, X. Y., Zhao, W., Shi, B., & Yao, Q. H. (2014). Gene expression profiles of Arabidopsis under the stress of methyl viologen: A microarray analysis. Molecular Biology Reports, 41, 7089–7102.

    Article  CAS  Google Scholar 

  • Hassan, N. M., & Alla, M. M. N. (2005). Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiologiae Plantarum, 27(4), 429–438.

    Article  CAS  Google Scholar 

  • Hatterman‐Valenti, H., & Mayland, P. (2005). Annual flower injury from sublethal rates of dicamba, 2,4‐d, and premixed 2,4‐d + mecoprop + dicamba. Horticulture Science, 40, 680–684.

    Google Scholar 

  • Heap, I. (1988). Resistance to herbicides in annual ryegrass (Lolium rigidum). PhD Thesis, University Waite Agriculture Institute, Adelaide, Australia.

    Google Scholar 

  • Heap, I. (2018). International survey of herbicide resistant weeds. [WWW document] URL www.weedscience.org. Accessed 23 Jan 2019.

  • Hickey, J., & Krueger, W. (1974). Alachlor and 1,8-naphthalic anhydride effects on corn coleoptiles. Weed Science, 22(3), 250–252. https://doi.org/10.1017/S0043174500037000

    Article  CAS  Google Scholar 

  • Hoagland, R. E. (1989). Acifluorfen action on growth and phenolic metabolism in soybean (Glycine max) seedlings. Weed Science 37(6):743–747.

    Google Scholar 

  • Iwakami, S., Endo, M., Saika, H., Okuno, J., Nakamura, N., Yokoyama, M., Watanabe, H., Toki, S., Uchino, A., & Inamura, T. (2014). Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiology, 165(2), 618–629. https://doi.org/10.1104/pp.113.232843

    Article  CAS  Google Scholar 

  • Jan, R., Asaf, S., Numan, M., Lubna, L., & Kim, K. M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11, 968. https://doi.org/10.3390/agronomy11050968

    Article  CAS  Google Scholar 

  • Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3–4), 90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  • Kaur, R., Mavi, G., Raghav, S., & Khan, I. (2019). Pesticides classification and its impact on environment. International Journal of Current Microbiology and Applied Science, 8, 1889–1897. https://doi.org/10.20546/ijcmas.2019.803.224

    Article  CAS  Google Scholar 

  • Kerchev, P., Mühlenbock, P., Denecker, J., Morreel, K., Hoeberichts, F. A., Van Der Kelen, K., Vandorpe, M., Nguyen, L., Audenaert, D., & Van Breusegem, F. (2015). Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant, Cell & Environment, 38, 253–265.

    Article  CAS  Google Scholar 

  • Kilic, S., Duran, R. E., & Coskun, Y. (2015). Morphological and physiological responses of maize (Zea mays L.) seeds grown under increasing concentrations of chlorantraniliprole insecticide. Polish Journal of Environmental Studies, 24, 1069–1075.

    Article  Google Scholar 

  • Kim, G., Clarke, C. R., Larose, H., Tran, H. T., Haak, D. C., Zhang, L., Askew, S., Barney, J., & Westwood, J. H. (2017). Herbicide injury induces DNA methylome alterations in Arabidopsis. Peer J, 20(5), e3560. https://doi.org/10.7717/peerj.3560

    Article  CAS  Google Scholar 

  • Komives, T., & Casida, J. E. (1982). Diphenylether herbicides: Effects of acifluorfen on phenylpropanoid biosynthesis and phenylalanine ammonia lyase activity in spinach. Pesticide Biochemistry and Physiology, 18, 191.

    Article  CAS  Google Scholar 

  • Köster, J., Thurow, C., Kruse, K., Meier, A., Iven, T., Feussner, I., & Gatz, C. (2012). Xenobiotic and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 promoter. Plant Physiology, 159, 391–402.

    Article  Google Scholar 

  • Kumar, S. (2010). Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L. Cytology and Genetics, 44, 79–87. https://doi.org/10.3103/S0095452710020027

    Article  Google Scholar 

  • Lamsal, K., Ghimire, B., Sharma, P., Ghimiray, A., Kim, S. W., Yu, C., Chung, I., Lee, Y., Kim, J. S., & Shakya, S. (2010). Genotoxicity evaluation of the insecticide ethion in root of Allium cepa L. African Journal of Biotechnology, 9, 4204–4210.

    CAS  Google Scholar 

  • Lei, M. G., Zhang, H. M., Julian, R., Tang, K., Xie, S. J., & Zhu, J. K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proceedings of National Academy of Science USA, 112, 3553–3557.

    Article  CAS  Google Scholar 

  • Lu, Y. C., Luo, F., Pu, Z. J., Zhang, S., Huang, M. T., & Yang, H. (2016). Enhanced detoxification and degradation of herbicide atrazine by a group of O-methyltransferases in rice. Chemosphere 165:487–496.

    Google Scholar 

  • Lydon, J., & Duke, S. O. (1989). Pesticide effects on secondary metabolism of higher plants. Pesticide Science, 25, 361–373.

    Article  CAS  Google Scholar 

  • Mahapatra, K., De, S., Banerjee, S., & Roy, S. (2019). Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum – graecum L.) seedlings. Journal of Hazardous Materials, 369, 362–374.

    Article  CAS  Google Scholar 

  • Menzyanova, N., Shishatskaya, E., Pyatina, S., & Volova, T. (2020). Cytological Effects of Herbicidal and Fungicidal Pesticides on Root Apex Meristem Cells of Triticum aestivum. Research Square (Pre Print)

    Google Scholar 

  • Misra, S. G., & Mani, D. (1994). Adverse effects of pesticides. In S. G. Misra & D. Mani (Eds.), Agricultural pollution II. Ashish Publisher.

    Google Scholar 

  • Moldes, C. A., Medici, L. O., Abrahao, O. S., Tsai, S. M., & Azevedo, R. A. (2008). Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiologiae Plantarum 30(4):469–479.

    Google Scholar 

  • Moffett, J. O., Morton, H. L., & Macdonald, R. H. (1972). Toxicity of some herbicidal sprays to honey bees. Journal of Economic Entomology, 65, 32–36.

    Article  CAS  Google Scholar 

  • Morillo, E., & Villaverde, J. (2017). Advanced technologies for the remediation of pesticide contaminated soils. Science of the Total Environment, 586, 576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020

    Article  CAS  Google Scholar 

  • Moriarty, F. (1983). Ecotoxicology: the study of pollutants in ecosystems. Academic Press.

    Google Scholar 

  • Mostafalou, S., & Abdollahi, M. (2012). Concerns of environmental persistence of pesticides and human chronic diseases. Clinical and Experimental Pharmacology, S5, e002. https://doi.org/10.4172/2161-1459.S5-e002

    Article  Google Scholar 

  • Nardemir, G., Agar, G., Arslan, E., & Erturk, F. A. (2015). Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theoretical and Experimental Plant Physiology, 27, 131–139.

    Article  Google Scholar 

  • Nayak, P., & Hitesh, S. (2021). Pesticides and Indian agriculture – A review. International Journal of Research, 9, 250–263.

    Google Scholar 

  • Neve, P., & Powles, S. (2005). Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theoretical and Applied Genetics, 110, 1154–1166.

    Article  CAS  Google Scholar 

  • Niti, C., Sunita, S., Kamlesh, K., & Rakesh, K. (2013). Bioremediation: An emerging technology for remediation of pesticides. Research Journal of Chemistry and Environment, 17, 88–105.

    CAS  Google Scholar 

  • Ortega, Y. K., & Pearson, D. E. (2011). Long-term effects of weed control with picloram along a gradient of spotted Knapweed invasion. Rangeland Ecology & Management, 64, 67–77. https://doi.org/10.2111/rem-d-10-00034.1

    Article  Google Scholar 

  • Ossowski, S., Schneeberger, K., Lucas-Lledó, J. I., Warthmann, N., Clark, R. M., Shaw, R. G., Weigel, D., & Lynch, M. (2010). The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327(5961), 92–94. https://doi.org/10.1126/science.1180677

    Article  CAS  Google Scholar 

  • Parween, T., Jan, S., & Fatma, M. T. (2012). Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. Journal of Environmental Science and Technology, 9(4), 605–612.

    CAS  Google Scholar 

  • Pecinka, A., Abdelsamad, A., & Vu, G. T. (2013). Hidden genetic nature of epigenetic natural variation in plants. Trends in Plant Science, 18, 625–632. https://doi.org/10.1016/j.tplants.2013.07.005

    Article  CAS  Google Scholar 

  • Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A., & D’Amore, M. (1992). Environmental and human costs of pesticide use. Bioscience, 42, 750–760.

    Article  Google Scholar 

  • Powles, S. B., & Yu, Q. (2010). Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 61, 317–347. https://doi.org/10.1146/annurev-arplant-042809-112119

    Article  CAS  Google Scholar 

  • Rad, M. H., Aviazi, A. A., & Jagannath, S. (2011). Cytogenetic and biochemical effects of imazethapyr in wheat (Triticum duram). Turkish Journal of Biology, 35, 1–6. https://doi.org/10.3906/biy-1008-75

    Article  Google Scholar 

  • Radwan, D. E. M. (2012). Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pesticide Biochemistry and Physiology, 102, 182–188.

    Article  CAS  Google Scholar 

  • Rashid, B., Husnain, T., & Riazuddin, S. (2010). Herbicides and pesticides as potential pollutants: A global problem. Plant Adaption and Phytoremedation. https://doi.org/10.1007/978-90-481-9370-7_19

  • Rio, A. D., Bamberg, J., Centeno-Diaz, R., Salas, A., Roca, W., & Tay, D. (2012). Effects of the pesticide furadan on traits associated with reproduction in wild potato species. American Journal of Plant Sciences, 3, 1608–1612.

    Article  Google Scholar 

  • Rosell, G., Quero, C., Coll, J., & Guerrero, A. (2008). Biorational insecticides in pest management. Journal of Pesticide Science, 33, 103–121.

    Article  CAS  Google Scholar 

  • Ross, M. A., & Childs, D. (1995). Herbicide mode-of-action summary. WWW 1996.

    Google Scholar 

  • Saladin, G., & Clément, C. (2005). Physiological effects of pesticides on cultivated crops. In Agriculture and soil pollution: New research (pp. 53–86). Nova Science Publishers.

    Google Scholar 

  • Saladin, G., Magne, C., & Clement, C. (2003). Physiological stress responses of Vitis vinifera L. to the fungicides fludioxonil and pyrimethanil. Pesticide Biochemistry and Physiology, 77, 125–137.

    Article  CAS  Google Scholar 

  • Scarponi, L., Vischetti, C., & Hassan, N. M. (2002). Effects of propachlor on the formation of carbohydrates and proteins in Vicia faba and the response of its defence mechanisms. Agrochimica, XLVIE(3–4), 165–175.

    Google Scholar 

  • Schmitz, R. J., Schultz, M. D., Lewsey, M. G., O’Malley, R. C., Urich, M. A., Libiger, O., Schork, N. J., & Ecker, J. R. (2011). Transgenerational epigenetic instability is a source of novel methylation variants. Science, 334(6054), 369–373. https://doi.org/10.1126/science.1212959

    Article  CAS  Google Scholar 

  • Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., Rehman, S., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147, 935–944.

    Article  CAS  Google Scholar 

  • Shakir, S. K., Kanwal, M., Murad, W., Rehman, Z., Rehman, S., Daud, M. K., & Azizullah, A. (2016). Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). Ecotoxicology, 25(2), 329–341.

    Article  CAS  Google Scholar 

  • Shakir, S. K., Irfan, S., Akhtar, B., Rehman, S. U., Daud, M. K., Taimur, N., & Azizullah, A. (2018). Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology, 27(7), 919–935. https://doi.org/10.1007/s10646-018-1916-6

    Article  CAS  Google Scholar 

  • Sharma, H. C., & Ortiz, R. (2002). Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology, 23, 111–135.

    CAS  Google Scholar 

  • Sharma, I., Bhardwaj, R., & Pati, P. K. (2012). Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicology and Environmental Safety, 85, 72–81.

    Article  CAS  Google Scholar 

  • Sharma, I., Bhardwaj, R., & Pati, P. K. (2015). Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. Journal of Plant Growth Regulation, 34, 509–518.

    Article  CAS  Google Scholar 

  • Sharma, A., Kumar, V., Singh, R., Thukral, A. K., & Bhardwaj, R. (2016a). Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicology and Environmental Safety, 133, 195–201.

    Article  CAS  Google Scholar 

  • Sharma, A., Bhardwaj, R., Kumar, V., & Thukral, A. K. (2016b). GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environmental Science and Pollution Research, 23(14), 14518–14525.

    Article  CAS  Google Scholar 

  • Sharma, A., Kumar, V., Thukral, A. K., & Bhardwaj, R. (2016c). Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Indian Journal of Plant Physiology, 21, 70–75.

    Article  Google Scholar 

  • Sharma, A., Thakur, S., Kumar, V., Kanwar, M. K., Kesavan, A. K., & Thukral, A. (2016d). Pre-sowing seed treatment with 24-epibrassinolideameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front. Plant Science, 7, 1569. https://doi.org/10.3389/fpls.2016.01569

    Article  Google Scholar 

  • Sharma, A., Kumar, V., Kanwar, M. K., Thukral, A. K., & Bhardwaj, R. (2017a). Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L. Russian Journal of Plant Physiology, 64(4), 509–517.

    Article  CAS  Google Scholar 

  • Sharma, A., Thakur, S., Kumar, V., Kesavan, A. K., Thukral, A. K., & Bhardwaj, R. (2017b). 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biology, 17, 56. https://doi.org/10.1186/s12870-017-1003-9

  • Sharma, A., Kumar, V., Yuan, H., Kanwar, M. K., Bhardwaj, R., Thukral, A. K., & Zheng, B. (2018). Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Frontiers in Plant Science, 9, 1609. https://doi.org/10.3389/fpls.2018.01609

    Article  Google Scholar 

  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019a). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1–16. https://doi.org/10.1007/s42452-019-1485-1

    Article  CAS  Google Scholar 

  • Sharma, A., Kumar, V., Thukral, A., & Bhardwaj, R. (2019b). Responses of plants to pesticide toxicity: An overview. Planta Daninha, 37. https://doi.org/10.1590/s0100-83582019370100065

  • Siddiqui, Z. S., & Ahmed, S. (2006). Combined effects of pesticide on growth and nutritive composition of soybean plants. Pakistan Journal of Botany, 38, 721–733.

    Google Scholar 

  • Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biology, 4, 180–183.

    Article  CAS  Google Scholar 

  • Štajner, D., Popoviæ, M., & Štajner, M. (2003). Herbicide induced oxidative stress in lettuce, beans, pea seeds and leaves. Biologia Plantarum, 47(4), 575–579.

    Article  Google Scholar 

  • Subedi, M., Willenborg, C. J., & Vandenberg, A. (2017). Influence of harvest aid herbicides on seed germination, seedling vigor and milling quality traits of red lentil (Lens culinaris L.). Frontier Plant Science, 8, 311. https://doi.org/10.3389/fpls.2017.00311

    Article  Google Scholar 

  • Tan, W., Li, Q., & Zhai, H. (2012). Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen. Pesticide Biochemistry and Physiology, 103, 210–218.

    Article  CAS  Google Scholar 

  • Tang, Q., Liang, G. F., Lu, X. L., & Ding, S. Y. (2014). Effects of corridor networks on plant species composition and diversity in an intensive agriculture landscape. Chinese Geographical Science, 24, 93–103. https://doi.org/10.1007/s11769-014-0659-4

    Article  Google Scholar 

  • Tomer, N. (2013). Determination of chlorinated pesticide in vegetables, cereals and pulses by gas chromatography in east national capital region, Delhi, India. Research Journal of Agriculture and Forestry Science, 1, 27–28.

    Google Scholar 

  • Tort, N., Oztork, I., & Guvensen, A. (2005). Effects of some fungicides on pollen morphology and anatomy of tomato (Lycopersicon esculentum mill.). Pakistan Journal of Botany, 37, 23–30.

    Google Scholar 

  • Truta, E., Vochita, G., & Rosu, C. M. (2011). Evaluation of roundup-induced toxicity on genetic material and on length growth of barley seedlings. Acta Biologica Hungarica, 62, 290–301. https://doi.org/10.1556/ABiol.62.2011.3.8

    Article  CAS  Google Scholar 

  • Vats, S. (2015). Herbicides: History, classification and genetic manipulation of plants for herbicide resistance. Sustainable Agriculture Reviews 15 pp 153–192. https://doi.org/10.1007/978-3-319-09132-7_3

  • Velini, E. D., Trindade, M. L. B., Barberis, L. R. M., & Duke, S. O. (2010). Growth regulation and other secondary effects of herbicides. Weed Science, 58(3), 351–354. http://www.jstor.org/stable/40891108

    Article  CAS  Google Scholar 

  • Vila-Aiub, M. M., & Ghersa, C. M. (2005). Building up resistance by recurrently exposing target plants to sublethal doses of herbicide. European Journal of Agronomy, 22, 195–207.

    Article  CAS  Google Scholar 

  • Willing, E. M., Piofczyk, T., Albert, A., Winkler, J. B., Schneeberger, K., & Pecinka, A. (2016). UVR2ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nature Communications, 7, 1–9.

    Article  Google Scholar 

  • Wright, J. P. (1994). Use of membrane potential measurement to study mode of action of diclofopmethyl. Weed Science, 42, 285–292.

    Article  CAS  Google Scholar 

  • Xia, X. J., Huang, Y. Y., Wang, L., Huang, L. F., Yu, W. L., Zhou, Y. H., & Yu, J. Q. (2006). Pesticides induced depression of photosynthesis was alleviated by 24-epi-brassinolide pre-treatment in Cucumis sativus L. Pesticide Biochemistry and Physiology, 86, 42–48.

    Article  CAS  Google Scholar 

  • Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant physiology 150(2):801–814.

    Google Scholar 

  • Zacharia, Z., & Tano, J. (2011). Identity, physical and chemical properties of pesticides. In Pesticides in the modern world – Trends in pesticides analysis. Intech Open. https://doi.org/10.5772/17513

    Google Scholar 

  • Zaka, S. M., Iqbal, N., Saeed, Q., Akrem, A., Batool, M., Khan, A. A., Anwar, A., Bibi, M., Azeem, S., Rizvi, D. E., Bibi, R., Khan, K. A., Ghramh, H. A., Ansari, M. J., & Latif, S. (2019). Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae). Saudi Journal of Biological Science, 26(7), 1767–1771. https://doi.org/10.1016/j.sjbs.2018.05.012

    Article  CAS  Google Scholar 

  • Zhang, Q., Liang, M., Liu, Y., Yang, C., Zeng, J., Qin, J., & Liao, Z. (2021). Development of homozygous transgenic Atropa belladonna plants with glyphosate resistance and high-yield scopolamine using metabolic engineering. Industrial Crops and Products 171:113953.

    Google Scholar 

  • Zhou, Y., Xia, X., Yu, G., Wang, J., Wu, J., Wang, M., Yang, Y., Shi, K., Yu, Y., Chen, Z., Gan, J., & Yu, J. (2015). Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 5, 9018.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Council of Scientific and Industrial Research, Govt. of India, (Ref. No. 38(1587)/16/EMR-II, dated: 17/05/2016 to SR), UGC, Govt. of India (Start-Up research grant No.F.30-158/2015 (BSR), and SERB, DST, Govt of India (Ref. No. ECR/2016/000539 to SR) for providing financial support for performing research related to the topic discussed in this review. SB is thankful to CSIR, Govt. of India (09/025(0261)/2018-EMR-I) for the research fellowship. MM (DST/INSPIRE Fellowship/2017/IF17001) and SN (DST/INSPIRE Fellowship/2021/IF200219) are thankful for the DST-INSPIRE fellowship. PR is thankful to UGC (715/(CSIR-UGC NET JUNE 2019)), Govt. of India for the research fellowship. We apologize to those authors whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Mitra, M., Roy, P., Nandi, S., Roy, S. (2023). Multiple Adaptation Strategies of Plants to Mitigate the Phytotoxic Effects of Diverse Pesticides and Herbicides. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_12

Download citation

Publish with us

Policies and ethics