Skip to main content

Studying Optimal Set of Input Parameters for CBN Grinding Aluminum 6061T6 on CNC Milling Machine

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2022)

Abstract

This article presents a multi-objective optimization process of surface grinding for Aluminum alloy 6061 in CNC machine tools. The aim is to find the optimal set of grinding parameters that can simultaneously satisfy maximizing material removal speed (MRS) and minimizing surface roughness. The partial factor method 24–1 is used to determine the number of tests. Four process parameters are chosen as input parameters, namely spindle speed (Rpm), feed rate (Fe), depth of cut (aed), down feed (Df). The multi-objective function optimization becomes only the optimization of Composite Desirability function (CDF). Regression functions to predict both surface roughness and material removal rate are constructed based on the experimental results. The results reveal that when CDF reaches the value of 0.669, it can be found the minimum surface roughness of 0.19 µm and MRS reaches a maximum value of 16.23 (g/h).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gopal, A.V., Rao, P.V.: Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding. Int. J. Mach. Tools Manuf. 43(13), 1327–1336 (2003)

    Google Scholar 

  2. Ting, T.O., Lee, T.S., Htay, T.: Performance analysis of grinding process via particle swarm optimization. In: Proceedings of the Sixth International Conference on Computational Intelligence and Multimedia Applications (2005)

    Google Scholar 

  3. Abdur-Rasheed, A., Konneh, M.: Optimization of precision grinding parameters of silicon for surface roughness based on taguchi method. Adva. Mater. Res. 264–265, 997–1002 (2011)

    Article  Google Scholar 

  4. Wu, S., et al.: A simulation platform for optimal selection of robotic belt grinding system parameters. Int. J. Adv. Manuf. Technol. 64(1–4), 447–458 (2012)

    Google Scholar 

  5. Hoang, T.D., Tran, T.H., Cuong, N.V., Le, H.K., Nga, N.T.T.: An optimization study on surface grinding stainless steel. Int. J. Eng. Technol. 7 (2018)

    Google Scholar 

  6. Pai, D., Rao, S., D’Souza, R.: Application of response surface methodology and enhanced non-dominated sorting genetic algorithm for optimisation of grinding process. Procedia Eng. 64, 1199–1208 (2013)

    Article  Google Scholar 

  7. Kumar, P., Kumar, A., Singh, B.: Optimization of process parameters in surface grinding using response surface methodology. IJRMET 3(2) (2013)

    Google Scholar 

  8. Periyasamy, S., et al.: Optimization of surface grinding process parameters for minimum surface roughness in AISI 1080 using response surface methodology. Adv. Mater. Res. 984–985, 118–123 (2014)

    Article  Google Scholar 

  9. Karande, M.R.J.: Optimization of cylindrical grinding machine parameters for minimum surface roughness and maximum MRR. GRD J. Eng. 2 (2017)

    Google Scholar 

  10. Selvaraj, D.P., Chandramohan, P.: Optimization of surface roughness of AISI 304 austenitic stainless steel in turning operation using Taguchi method. IJARIIE (2017)

    Google Scholar 

  11. Sedighi, M., Afshari, D.: Creep feed grinding optimization by an integrated GA-NN system. J. Intell. Manuf. 21(6), 657–663 (2009)

    Article  Google Scholar 

  12. Samuel, A.U., Araoyinbo, A.O., Elewa, R.R., Biodun, M.B.: Effect of machining of aluminium alloys with emphasis on aluminium 6061 Alloy—A review. In: International Conference on Engineering for Sustainable World (2020)

    Google Scholar 

  13. Li, F., et al.: Optimization of grinding parameters for the workpiece surface and material removal rate in the belt grinding process for polishing and deburring of 45 steel. Appl. Sci. 10(18) (2020)

    Google Scholar 

  14. Samuel, A.U., et al.: Effect of machining of aluminium alloys with emphasis on aluminium 6061 alloy—A review. IOP Conf. Ser.: Mater. Sci. Eng. 1107(1) (2021)

    Google Scholar 

  15. Tamil Vanan, S.K., et al.: Evaluation of surface grinding of AISI 304 stainless steel using dry and compressed air cooling techniques. SN Appl. Sci. 3(3) (2021)

    Google Scholar 

  16. Kumar, M., Singh, S., Goyal, K.: To study the effect of grinding parameters on surface roughness and material removal rate of cylindrical grinding of heat treated en 47 steel. J. Mech. Eng. 45 (2015)

    Google Scholar 

  17. Lee, P.H., Chung, H., Lee, S.W.: Optimization of micro-grinding process with compressed air using response surface methodology. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 225(11), 2040–2050 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Thai Nguyen University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Ngoc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danh, B.T. et al. (2023). Studying Optimal Set of Input Parameters for CBN Grinding Aluminum 6061T6 on CNC Milling Machine. In: Nguyen, D.C., Vu, N.P., Long, B.T., Puta, H., Sattler, KU. (eds) Advances in Engineering Research and Application. ICERA 2022. Lecture Notes in Networks and Systems, vol 602. Springer, Cham. https://doi.org/10.1007/978-3-031-22200-9_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22200-9_95

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22199-6

  • Online ISBN: 978-3-031-22200-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics