Skip to main content

Overload and Short-Circuit Protection Strategy for Voltage-Source Inverter-Based UPS

  • Chapter
  • First Online:
Advanced Control and Protection of Modular Uninterruptible Power Supply Systems

Part of the book series: Power Systems ((POWSYS))

  • 172 Accesses

Abstract

In this chapter, an overload and short-circuit protection method is proposed for voltage-source inverter-based uninterruptible power supply (UPS) system. In order to achieve high reliability and availability of the UPS, a short-circuit and overload protection scheme is necessary. When overload or short circuit happens, using the proposed control method, the amplitude of the output current can be limited to a constant value, which can be set by the customer to avoid the destruction of the power converter and to obtain a faster recovery performance as well. The detailed principle of the proposed protection method is discussed in this chapter. It mainly contains three parts in the control diagram for current limit, first is the anti-windup in the voltage and current controllers, then the feedforward of the capacitor voltage to the current control loop, the last is the fast reset of the resonant part of the current controller when overcurrent happens. The procedure of developing the control method is also presented in the paper. Experimental results on a commercial UPS system are presented to verify the effectiveness of the control method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 04 May 2023

    A correction has been published.

References

  1. I. Lizama, R. Alvarez, S. Bernet, M. Wagner, A new method for fast short circuit protection of IGBTs, in Proc. IEEE IECON 2014 (2014), pp. 1072–1076

    Google Scholar 

  2. J.H. Choi, K.J. Hong, J.S. Park, B.G. Gu, C.Y. Won, A new short circuit protection scheme for small inverters, in Proc. IEEE VPPC 2012 (2012), pp. 1544–1547

    Google Scholar 

  3. X. Zhang, M. Chen, N. Zhu, D. Xu, A self-adaptive blanking circuit for IGBT short-circuit protection based on VCE measurement, in Proc. IEEE ECCE 2015 (2015), pp. 4125–4131

    Google Scholar 

  4. T. Horiguchi, S. Kinouchi, H. Urushibata, S. Okamoto, S. Tominaga, H. Akagi, A short circuit protection method based on a gate charge characteristic, in Proc. IEEE ECCE-Asia 2014 (2014), pp. 2290–2296

    Google Scholar 

  5. M. Oinonen, M. Laitinen, J. Kyyrä, Current measurement and short-circuit protection of an IGBT based on module parasitics, in Proc. IEEE EPE 2014 (2014), pp. 1–9

    Google Scholar 

  6. A.K. Irodi, N.R. Srinivas, Active overcurrent protection schemes in bridge inverters operating under shoot-through conditions, in Proc. IEEE PICC 2015 (2015), pp. 1–5

    Google Scholar 

  7. D. Sadik, J. Colmenares, D. Peftitsis, G. Tolstoy, J. Rabkowski, H. Nee, Analysis of short-circuit conditions for silicon carbide power transistors and suggestions for protection, in Proc. IEEE EPE-ECCE Europe 2014 (2014), pp. 1–10

    Google Scholar 

  8. Y. Wang, C. Lee, P. Kuo, Y. Lin, Overcurrent protection design, failure mode and effect analysis of an electric vehicle inverter, in Proc. IEEE ICIT 2016 (2016), pp. 1287–1292.

    Google Scholar 

  9. X. Pei, Y. Kang, Short-circuit fault protection strategy for high-power three-phase three-wire inverter. IEEE Trans. Ind. Inform. 8(3), 545–553 (2012)

    Article  Google Scholar 

  10. F.B. Costa, A. Monti, S.C. Paiva, Overcurrent protection in distribution systems with distributed generation based on the real-time boundary wavelet transform. IEEE Trans. Power Delivery 32(1), 462–473 (2017)

    Article  Google Scholar 

  11. M.E. Santos, B.J.C. Filho, Short circuit and overcurrent protection of IGCT-based three-level NPC inverters, in Proc. IEEE PESC 2004 (2004), pp. 2553–2558

    Google Scholar 

  12. N. Bottrell, T.C. Green, Comparison of current-limiting strategies during fault ride-through of inverters to prevent latch-up and wind-up. IEEE Trans. Power Electron. 29(7), 3786–3797 (2014)

    Article  Google Scholar 

  13. B. Lu, S.K. Sharma, A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 45(5), 1770–1777 (2009)

    Article  Google Scholar 

  14. M. Oinonen, Short circuit protection for a power transistor. Master of Science Thesis, Aalto University, Finland, 2013, p. 81

    Google Scholar 

  15. A. Volke, M. Hornkamp, IGBT Modules, Technologies, Driver and Application (Infineon Technologies AG, 2011)

    Google Scholar 

  16. W. El-Khattam, T.S. Sidhu, Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter. IEEE Trans. Power Delivery 23(2), 576–585 (2008)

    Article  Google Scholar 

  17. W. El-Khattam, T.S. Sidhu, Resolving the impact of distributed renewable generation on directional overcurrent relay coordination: a case study. IET Renew. Power Gen. 3(4), 415–425 (2009)

    Article  Google Scholar 

  18. A.S. Noghabi, H.R. Mashhadi, J. Sadeh, Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming. IEEE Trans. Power Delivery 25(3), 1348–1354 (2010)

    Article  Google Scholar 

  19. R.M. Chabanloo, H.A. Abyaneh, A. Agheli, H. Rastegar, Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network. IET Gen. Transm. Distrib. 5(9), 903–911 (2011)

    Article  Google Scholar 

  20. M.J. Newman, D.G. Holmes, An integrated approach for the protection of series injection inverters. IEEE Trans. Ind. Appl. 38(3), 679–687 (2002)

    Article  Google Scholar 

  21. T. Horiguchi, S.Kinouchi, Y. Nakayama, H.Akagi, A fast short-circuit protection method using gate charge characteristics of SiC MOSFETs, in Proc. IEEE ECCE 2015 (2015), pp. 4759–4764

    Google Scholar 

  22. R.S. Chokhawala, J. Catt, L. Kiraly, A discussion on IGBT short circuit behavior and fault protection schemes. IEEE Trans. Ind. Appl. 31(2), 256–263 (1995)

    Article  Google Scholar 

  23. M.A. Rodríguez-Blanco, A. Claudio-Sanchez, D. Theilliol, L.G. Vela-Valdes, P. Sibaja-Terán, L. Hernández-González, J. Aguayo-Alquicira, A failure-detection strategy for IGBT based on gatevoltage behavior applied to a motor drive system. IEEE Trans. Ind. Electron. 58(5), 1625–1633 (2011)

    Article  Google Scholar 

  24. B.G. Park, J.B. Lee, D.S Hyun, A novel short-circuit detecting scheme using turn-on switching characteristics of IGBT, in Conf. Rec. IEEE IAS Annual Meeting (2008)

    Google Scholar 

  25. S. Musumeci, R. Pagano, A. Raciti, G. Belverde, M. Melito, A new gate circuit performing fault protections of IGBTs during short circuit transients, in Conf. Rec. IEEE IAS Annual Meeting, vol. 3 (2002), pp. 2614–2621

    Google Scholar 

  26. K. Yuasa, S. Nakamichi, I. Omura, Ultra high speed short circuit protection for IGBT with gate charge sensing, in Conf. Rec. IEEE ISPSD (2010), pp. 37–40

    Google Scholar 

  27. T. Tanimura, K. Yuasa, I. Omura, Full digital short circuit protection for advanced IGBTs, in Conf. Rec. IEEE ISPSD (2011), pp. 60–63

    Google Scholar 

  28. K. Hasegawa, K. Yamamoto, H. Yoshida, K. Hamada, M. Tsukuda, I. Omura, Short-circuit protection for an IGBT with detecting the gate voltage and gate charge. Microelectron. Rel. 54, 1897–1900 (2014)

    Article  Google Scholar 

  29. K. Ishikawa, K. Suda, M. Sasaki, H. Miyazaki, A 600 V driver IC with new short circuit protection in hybrid electric vehicle IGBT inverter system, in Conf. Rec. IEEE ISPSD (2005), pp. 59–62

    Google Scholar 

  30. B.G. Park, J.B. Lee, D.S. Hyun, A novel short-circuit detecting scheme using turn-on switching characteristic of IGBT, in Industry Applications Society Annual Meeting (IEEE IAS, 2008), pp. 1–5

    Google Scholar 

  31. K. Yuasa, S. Nakamichi, I. Omura, Ultra high speed short circuit protection for IGBT with gate charge sensing, in 22nd International Symposium on Power Semiconductor Devices IC’s (ISPSD) (2010), pp. 37–40

    Google Scholar 

  32. A. Radun, An alternative low-cost current-sensing scheme for high-current power electronics circuits. IEEE Trans. Ind. Electron. 42(1), 78–84 (1995)

    Article  Google Scholar 

  33. F. Huang, F. Flett, IGBT fault protection based on di/dt feedback control, in Power Electronics Specialists Conference (IEEE PESC) (2007), pp. 1478–1484

    Google Scholar 

  34. Z. Wang, X. Shi, L.M. Tolbert, A fast overcurrent protection scheme for IGBT modules through dynamic fault current evaluation, in IEEE APEC (2013), pp. 577–583

    Google Scholar 

  35. Z. Hu, C. Mao, J. Lu, S. Fan, Fuse protection of IGCTs against rupture in three-level commutated inverter, in Proc. IEEE ICPSC 2002 (2002), pp. 611–615

    Google Scholar 

  36. D. Liu, A. Hu, G. Wang, J. Guo, Triple-loop-controlled overload or short circuit current limiter and protection for three phase inverter, in Proc. IEEE ASEMD 2009 (2009), pp. 201–205

    Google Scholar 

  37. Z. Chen , X. Pei , M. Yang , L. Peng, P. Shi, A novel protection scheme for inverter-interfaced microgrid (IIM) operated in islanded mode. IEEE Trans. Power Electron. 33(9), 7684–7697 (2018)

    Google Scholar 

  38. R. Guzman, L.G. Vicuna, J. Morales, M. Castilla, J. Miret, Model-based active damping control for three-phase voltage source inverters with LCL filter. IEEE Trans. Power Electron. IEEE Early Access (2016). https://doi.org/10.1109/TPEL.2016.2605858

  39. M.S. Moon, R.W. Johnson, DSP control of UPS inverter with over-current limit using droop method, in Proc. IEEE 30th Annual IEEE Power Electronics Specialists Conference (Charleston, 1999), pp. 552–557

    Google Scholar 

  40. Z. Liang , X. Lin , Y. Kang, B. Gao, H. Lei, Short circuit current characteristics analysis and improved current limiting strategy for three-phase three-leg inverter under asymmetric short circuit fault. IEEE Trans. Power Electron. 33(8), 7214–7228 (2018)

    Article  Google Scholar 

  41. H. Wang, X. Pei, Y. Chen, Y. Kang, Y.F. Liu, Short-circuit fault protection strategy of parallel three-phase inverters, in Proc. IEEE Energy Convers. Congr. Expo. (Montreal, 2015), pp. 1736–1742

    Google Scholar 

  42. P. Nuutinen, P. Peltoniemi, P. Silventoinen, Short-circuit protection in a converter-fed low-voltage distribution network. IEEE Trans. Power Electron. 28(4), 1587–1597 (2013)

    Article  Google Scholar 

  43. D. Segaran, D.G. Holmes, B.P. McGrath, Enhanced load step response for a bidirectional DC–DC converter. IEEE Trans. Power Electron. 28(1), 371–379 (2013)

    Article  Google Scholar 

  44. C.A. Reis, N.A.P. Silva, Sufficient conditions for analysis of extrema in the step-response of the linear control systems. IEEE Latin Am. Trans. 9(7), 1025–1031 (2011)

    Article  Google Scholar 

  45. F. Zhang, Y. Yan, Start-up process and step response of a DC–DC converter loaded by constant power loads. IEEE Trans. Ind. Electron 58(1), 298–304 (2011)

    Article  Google Scholar 

  46. J. Kim, J. Lee, S. Cho, C. Hwang, C. Yoon, J. Fan, Analytical probability density calculation for step pulse response of a single-ended buffer with arbitrary power-supply voltage fluctuations. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(7), 2022–2033 (2014)

    Article  Google Scholar 

  47. T.J. Freeborn, B. Maundy, A.S. Elwakil, Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE J. Emerg. Sel. Topics Circuits Syst. 3(3), 367–376 (2013)

    Article  Google Scholar 

  48. H. Oka, Y. Baba, M. Ishii, N. Nagaoka, A. Ametani, Parametric study on unit step responses of impulse voltage measuring systems based on FDTD simulations. IEEE Trans. Power Delivery 28(1), 376–382 (2013)

    Article  Google Scholar 

  49. C. Benjamin Kuo, F. Golnaraghi, Automatic Control Systems, 8th edn. (Wiley, New York, 2003), p. 253. ISBN 0-471-13476-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoze Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, B. (2023). Overload and Short-Circuit Protection Strategy for Voltage-Source Inverter-Based UPS. In: Lu, J., Wei, B., Hou, X., Sun, Y. (eds) Advanced Control and Protection of Modular Uninterruptible Power Supply Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-22178-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22178-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22177-4

  • Online ISBN: 978-3-031-22178-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics