Skip to main content

Distributed Adaptive Virtual Impedance Control for Parallel-Connected Voltage Source Inverters in Modular UPS System

  • Chapter
  • First Online:
Advanced Control and Protection of Modular Uninterruptible Power Supply Systems

Part of the book series: Power Systems ((POWSYS))

  • 157 Accesses

Abstract

In this chapter, an average active power sharing control strategy based on distributed concept for the parallel operation of voltage source inverters (VSIs) is proposed to be applied to a modular uninterruptible power supply (UPS) systems. The presented method is named distributed adaptive virtual impedance control (DAVIC), which is coordinated with a droop control method. Low-bandwidth CAN-based communication is used for the requirement of data sharing of the proposed method in the real modular UPS system. Unlike the conventional virtual impedance control techniques, the virtual impedance of a converter module is adjusted automatically by using global information when DAVIC is applied and further to tune the output impedance of the power modules. The adaptive virtual impedance is calculated by using the difference between the active power of a local module and the average active power of all the modules in a modular UPS. The proposed method DAVIC overcomes the drawback of conventional virtual impedance control, since control since an accurate value of the real output impedances of different converter modules is not required. Simulations using PLECS and experimental results on a real commercial modular UPS are presented developed in order to verify the effectiveness of the proposed control methodology. These results have shown that a superior power sharing performance is obtained when using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Guerrero, J.C. Vasquez, J. Matas, Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Trans. Ind. Electron. 56(3), 726–736 (2009)

    Article  Google Scholar 

  2. S.Y. Altahir, X. Yan, X. Liu, A power sharing method for inverters in microgrid based on the virtual power and virtual impedance control, in Proceedings of the IEEE International Conference on Compatibility, Power Electronics and Power Engineering, Cadiz (2017), pp. 151–156

    Google Scholar 

  3. J.M. Guerrero, L.G. Vicuña, J. Matas, M. Castilla, J. Miret, Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 52(4), 1126–1135 (2005)

    Article  Google Scholar 

  4. C. Zhang, J.M. Guerrero, J.C. Vasquez, C.M. Seniger, Modular Plug’n’Play control architectures for three-phase inverters in UPS applications. IEEE Trans. Ind. Appl. 52(3), 2405–2414 (2016)

    Article  Google Scholar 

  5. K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, R. Belman, A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107–15 (2007)

    Article  Google Scholar 

  6. K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, R. Belmans, K.U. Leuven, A voltage and frequency droop control method for parallel inverters, in Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference, 20–25 June, 2004 (IEEE, Piscataway, 2004), pp. 2501–2507

    Google Scholar 

  7. J.M. Guerrero, J. Matas, L. Vicuna, M. Castilla, J. Miret, Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans. Ind. Electron. 54(2), 994–1004 (2007)

    Article  Google Scholar 

  8. J. He, Y.W. Li, J.M. Guerrero, An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Trans. Power Electron. 28(11), 5272–5282 (2013)

    Article  Google Scholar 

  9. H. Shi, F. Zhuo, D. Zhang, Z. Geng, F. Wang, Adaptive implementation strategy of virtual impedance for paralleled inverters UPS, in Proceedings of the IEEE ECCE (2014, Sep. 14–18), pp. 158–162

    Google Scholar 

  10. J.M. Guerrero, J.C. Vasquez, L.G. Vicuña, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  11. A.R. Bergen, Power Systems Analysis (Prentice-Hall, Englewood Cliffs, 1986)

    Google Scholar 

  12. H. Mahmood, D. Michaelson, J. Jiang, Accurate reactive power sharing in an Islanded microgrid using adaptive virtual impedances. IEEE Trans. Power Electron. 30(3), 1605–1617 (2015)

    Article  Google Scholar 

  13. C. Dou, Z. Zhang, D. Yue, M. Song, Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid. IET Gener. Transm. Distrib. 11(4), 1046–1054, 3 9 (2017)

    Google Scholar 

  14. X. Sun, Y. Tian, Z. Chen, Adaptive decoupled power control method for inverter connected DG. IET. Renew. Power Gener. 8(2), 171–82 (2014)

    Article  Google Scholar 

  15. A. Villa, F. Belloni, R. Chiumeo, C. Gandolfi, Conventional and reverse droop control in islanded microgrid: Simulation and experimental test, in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri (2016), pp. 288–294

    Google Scholar 

  16. D. Wu, F. Tang, J.C. Vasquez, J.M. Guerrero, Control and analysis of droop and reverse droop controllers for distributed generations, in Proceedings of the IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Barcelona (2014), pp. 1–5

    Google Scholar 

  17. J. Matas, M. Castilla, L. Vicuña, J. Miret, J.C. Vasquez, Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme. IEEE Trans. Power Electron. 25(12), 2993–3001 (2010)

    Article  Google Scholar 

  18. A. Engler, N. Soultanis, Droop control in LV-Grids, in Proceedings of the IEEE International Conference on Future Power Systems, Amsterdam (2005), pp. 1–6

    Google Scholar 

  19. K. Heuk, K.-D. Dettmann, Elektrische Energieversorgung, 3rd edn. (Vieweg, German, 2005)

    Book  Google Scholar 

  20. Y. Zhang, M. Yu, F. Liu, Y. Kang, Instantaneous current-sharing control strategy for parallel operation of UPS modules using virtual impedance. IEEE Trans. Power Electron. 28(1), 432–440 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoze Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, B. (2023). Distributed Adaptive Virtual Impedance Control for Parallel-Connected Voltage Source Inverters in Modular UPS System. In: Lu, J., Wei, B., Hou, X., Sun, Y. (eds) Advanced Control and Protection of Modular Uninterruptible Power Supply Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-22178-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22178-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22177-4

  • Online ISBN: 978-3-031-22178-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics