Abstract
Tourism and photography have become very complementary, and tourists are constantly seeking the best spots to capture pictures and memorize their vacations. However, the search for the best and unforgettable photographic spots is difficult and time-consuming for tourists, especially when visiting new regions. In this paper, we propose a method for discovering tourist photo spots from geotagged photos using clustering algorithms. The clusters are characterized to determine the type of photos such as selfies or panoramic. We compare our approach to the most used clustering algorithms namely K-Means and DBSCAN. The approach is simulated and experimentally evaluated on a real photographic dataset of the French capital Paris. Our approach identifies the best-known, quirky and thematic spots in the reference websites.
Keywords
- Tourism
- Photographic spots
- Clustering
- HDBSCAN
- Knowledge discovery
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
https://www.expedia.com, more than 750 millions monthly visitors.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Benabdellah, A.C., Benghabrit, A., Bouhaddou, I.: A survey of clustering algorithms for an industrial context. Procedia Comput. Sci. 148, 291–302 (2019)
Berger, H., Denk, M., Dittenbach, M., Pesenhofer, A., Merkl, D.: Photo-based user profiling for tourism recommender systems. In: Psaila, G., Wagner, R. (eds.) EC-Web 2007. LNCS, vol. 4655, pp. 46–55. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74563-1_5
Camilleri, M.A.: The tourism industry: an overview. In: Camilleri, M.A. (ed.) Travel Marketing, Tourism Economics and the Airline Product. THEM, pp. 3–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-49849-2_1
Cederholm, E.A.: The use of photo-elicitation in tourism research-framing the backpacker experience. Scand. J. Hosp. Tour. 4(3), 225–241 (2004)
Clements, M., Serdyukov, P., De Vries, A.P., Reinders, M.J.: Using flickr geotags to predict user travel behaviour. In: Proceedings of the 33rd International ACM SIGIR Conference, pp. 851–852 (2010)
Da Rugna, J., Chareyron, G., Branchet, B.: Tourist behavior analysis through geotagged photographies: a method to identify the country of origin. In: 2012 IEEE 13th International Symposium CINTI, pp. 347–351. IEEE (2012)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
García-Palomares, J.C., Gutiérrez, J., Mínguez, C.: Identification of tourist hot spots based on social networks: a comparative analysis of European metropolises using photo-sharing services and GIS. Appl. Geogr. 63, 408–417 (2015)
Gavric, K.D., Culibrk, D.R., Lugonja, P.I., Mirkovic, M.R., Crnojevic, V.S.: Detecting attractive locations and tourists’ dynamics using geo-referenced images. In: 2011 10th, TELSIKS, vol. 1, pp. 208–211. IEEE (2011)
Gogoi, D.: A conceptual framework of photographic tourism. IMPACT: IJRANSS 2, 109–114 (2014)
Gretzel, U.: Tourism and Social Media, vol. 2. Sage, Thousand Oaks (2018)
Henriques, R., Bacao, F., Lobo, V.: Exploratory geospatial data analysis using the GeoSOM suite. Comput. Environ. Urban Syst. 36(3), 218–232 (2012)
Höpken, W., Müller, M., Fuchs, M., Lexhagen, M.: Flickr data for analysing tourists’ spatial behaviour and movement patterns: a comparison of clustering techniques. J. Hospitality Tourism Technol. (2020)
Kang, M., Schuett, M.A.: Determinants of sharing travel experiences in social media. J. Travel Tourism Mark. 30(1–2), 93–107 (2013)
Kennedy, L., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make sense of the world: context and content in community-contributed media collections. In: Proceedings of the 15th ACM Multimedia, pp. 631–640 (2007)
Kisilevich, S., Mansmann, F., Keim, D.: P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. In: Proceedings of the 1st COM-GEO International Conference, pp. 1–4 (2010)
Kuo, C.L., Chan, T.C., Fan, I., Zipf, A., et al.: Efficient method for POI/ROI discovery using flickr geotagged photos. ISPRS Int. J. Geo Inf. 7(3), 121 (2018)
Lu, X., Wang, C., Yang, J.M., Pang, Y., Zhang, L.: Photo2Trip: generating travel routes from geo-tagged photos for trip planning. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 143–152 (2010)
Majid, A., Chen, L., Chen, G., Mirza, H.T., Hussain, I., Woodward, J.: A context-aware personalized travel recommendation system based on geotagged social media data mining. Int. J. Geogr. Inf. Sci. 27(4), 662–684 (2013)
McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)
Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “Kneedle” in a haystack: detecting knee points in system behavior. In: 2011 31st ICDCS, pp. 166–171. IEEE (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Deseure-Charron, F., Djebali, S., Guérard, G. (2022). Clustering Method for Touristic Photographic Spots Recommendation. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13726. Springer, Cham. https://doi.org/10.1007/978-3-031-22137-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-22137-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22136-1
Online ISBN: 978-3-031-22137-8
eBook Packages: Computer ScienceComputer Science (R0)