Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 186))

  • 207 Accesses

Abstract

The article describes the constitutive model based on the applied inelasticity theory—one of the combined hardening flow theories. The authors identify the material functions closing the applied inelasticity theory and formulate the fundamental experiment. The life of structural materials in the case of non-isothermal cyclic loading is predicted by analyzing the durability of the air-cell diesel's edge and the uncooled conical nozzle tip in the case of thermal cycling. Life estimates based on the applied inelasticity theory are compared to experimental data and conservative life estimation methods. The authors also consider examples of estimating the life of a durable power generation system's structure. Loading modes resulting in considerable life reduction are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birger IA, Shorr BE et al (1975) Termoprochnost’ detalej mashin: Spravochnik. Mashinostroenie, Moscow

    Google Scholar 

  2. Bondar VS (1990) Neuprugoe povedenie i razrushenie materialov i konstrukcii pri slozhnom neizotermicheskom nagruzhenii: dis d-ra fiz.-mat.nauk. Izd-vo MAMI, Moscow

    Google Scholar 

  3. Bondar VS (2004) Neuprugost’. Varianty teorii. FIZMATLIT, Moscow

    Google Scholar 

  4. Bondar VS, Danshin VV (2008) Plastichnost’. Proporcional'nye i neproporcional'nye nagruzhenija. FIZMATLIT, Moscow

    Google Scholar 

  5. Bondar VS (2013) Inelasticity. Variants of the theory. Begell House, New York

    Google Scholar 

  6. Bondar VS, Abashev DR (2018) Applied theory of inelasticity. PNRPU Mech Bull 4:147–162

    Google Scholar 

  7. Chaboche JL, Rousselier G (1983) On the plastic an viscoplastic constitutive equations. ASME J Pres Vessel Techn 105:153–164

    Article  Google Scholar 

  8. Chaboche JL (1989) Constitutive equation for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5(3):247–302

    Article  MATH  Google Scholar 

  9. Chaboche JL (1991) Thermodynamically based viscoplastic constitutive equations: theory versus experiment. In: ASME winter annual meeting, Atlanta, GA (USA), pp. 1–20

    Google Scholar 

  10. Chaboche JL (1993) Cyclic viscoplastic constitutive equations, parts I and II. ASME J Appl Mech 60:813–828

    Article  MATH  Google Scholar 

  11. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24:1642–1692

    Article  MATH  Google Scholar 

  12. Besson J, Cailletaud G, Chaboche J-L, Forest S, Blétry M (2010) Non-linear mechanics of materials. Springer, Heidelberg

    Book  Google Scholar 

  13. Kachanov LM (1960) Teorija polzuchesti. FIZMATLIT, Moscow

    Google Scholar 

  14. Il'jushin AA (1963) Plastichnost’. Osnovy obshchei matematicheskoi teorii. Izd. AN SSSR, M.

    Google Scholar 

  15. Il’jushin AA (1990) Mehanika sploshnoj sredy. Izd-vo MGU, Moscow

    Google Scholar 

  16. Korotkih JuG, Volkov IA (2008) Uravnenija sostojanija vjazkouprugoplasticheskih sred s povrezhdenijami. FIZMATLIT, Moscow

    Google Scholar 

  17. Korotkih JuG, Volkov IA, Igumnov LA (2015) Prikladnaja teorija vjazkoplastichnosti. Monografija. Izd-vo Nizhegorodskogo gos.universiteta, Nizhnij Novgorod

    Google Scholar 

  18. Krempl E (1974) The influence of state of stress on low-cycle fatigue of structural materials: a literature survey and interpretive report. Am Soc Test Mater Spec, Techn Publ, no 549, pp 1–46

    Google Scholar 

  19. Krempl E, Lu H (1984) The hardening and dependent behavior of fully annealed AISI Type 304 stainless steel under biaxial in phase and out-of-phase strain cycling at room temperature. ASME J Eng Mater Technol 106:376–382

    Article  Google Scholar 

  20. Krieg RD (1975) A. Practical Two Surface plasticity Theory. J Appl Mech 42:641–646

    Article  Google Scholar 

  21. Krieg RD, Swearengen JC, Rhode RW (1978). A physicallybased internal variable model for rate-dependent plasticity. In: Proc. ASME/CSME PVP Conference, pp 15–27

    Google Scholar 

  22. Lindholm US, Chan KS, Bodner SR, Weber RM, Walker KP, Cassenti BN (1985) Constitutive modeling for isotropic materials (HOST). Second annual contract report, NASA CR, 174980

    Google Scholar 

  23. Malinin NN (1975) Prikladnaja teorija plastichnosti i polzuchesti. Mashinostroenie, M., 400 p

    Google Scholar 

  24. Miller AK (1978) A unified approach to predicting interactions among creep, cyclic plasticity, and recovery. Nucl Eng Des 51:35–43

    Article  Google Scholar 

  25. Miller KJ, Brown MW (1984) Multiaxial fatigue: a brief review. In: Adv. Fract. Res. Proc. 6th Int. Conf. New Delhi 4–10, vol I, pp 31–56

    Google Scholar 

  26. Miller AK, Tanaka TG (1988) NONSS: a new method for integrating unified constitutive equations ander complex histories. Trans ASME: J Eng Mater and Technol 110(3):205–211

    Google Scholar 

  27. Novozhilov VV, Kadashevich JuI (1990) Mikronaprjazhenija v konstrukcionnyh materialah. Mashinostroenie, Leningrad

    Google Scholar 

  28. Ohno N (1982) A constitutive model of cyclic plasticity with a nonhardening strain region. J Appl Mech 49:721–727

    Article  Google Scholar 

  29. Ohno N (1990) Recent topics in constitutive modeling of cyclic and viscoplasticity. Appl Mech rev 43:283–295

    Article  Google Scholar 

  30. Ohno N, Wang JD (1991) Transformation of a nonlinear kinematics hardening rulle to a multisurface form under isothermal and nonisothermal conditions. Int J Plast 7:879–891

    Article  MATH  Google Scholar 

  31. Ohno N, Wang JD (1993) Kinematics hardening rule with critical state of dynamic recovery. Parts I and II. Int J Plast 9:375–403

    Article  MATH  Google Scholar 

  32. Rabotnov JN (1966) Polzuchest’ jelementov konstrukcij. Fizmatgiz, M.

    Google Scholar 

  33. Temis JM (2005) Modelirovanie plastichnosti i polzuchesti konstrukcionnyh materialov GTD. Materialy 49-oj Mezhdunarodnoj nauchno-tehnicheskoj konferencii AAI «Prioritety razvitija otechestvennogo avtotraktorostroenija i podgotovki inzhenernyh nauchnyh kadrov». Shkola-seminar «Sovremennye modeli termovjazkoplastichnosti». Chast’ 2. MAMI, Moscow, pp 25–76

    Google Scholar 

  34. Vasin RA (1987) Jeksperimental'no-teoreticheskoe issledovanie opredeljajushhih sootnoshenij v teorii uprugoplasticheskih processov. In: Avtoref. diss. d.f-m.n. MGU, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry R. Abashev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bondar, V.S., Abashev, D.R. (2023). Durability of High-Load Structures. In: Altenbach, H., Eremeyev, V.A., Igumnov, L.A., Bragov, A. (eds) Deformation and Destruction of Materials and Structures Under Quasi-static and Impulse Loading. Advanced Structured Materials, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-031-22093-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22093-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22092-0

  • Online ISBN: 978-3-031-22093-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics