Skip to main content

A Deep Learning Framework for Removing Bias from Single-Photon Emission Computerized Tomography

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13725))

Included in the following conference series:

  • 922 Accesses

Abstract

After being photographed by medical equipment, noise in the unprocessed medical image is removed through manual processing and correction to create a proper medical image. However, manually processing medical images takes a long time. Suppose the current medical images are used with artificial intelligence to predict the type and severity of the disease. In that case, patients can be prioritized based on the predicted results, reducing the probability of patients most in need of care not getting timely treatment and increasing the efficiency of visits. Most experts use deep learning image feature segmentation to learn all the features in the image. However, some features in the image are not needed. These unwanted image features will affect subsequent training, which we call “biased information.” In the process of training image features through artificial intelligence, biased information may overpower the more important image features in the target learning task, resulting in poor training results. Therefore, instead of learning all the features in the image, we should only learn what we need. This paper uses the architecture of biomedical image segmentation convolutional neural network combined with principal component analysis to extract the main feature weights in the image data and determine whether the feature is something we want to learn. If not, the feature is deleted, which prevents it from affecting subsequent training. The feature vector we need is associated with the first principal component. After learning the results, we can verify its accuracy through the image classification model. It is found that after biased information is removed, the classification effect is reduced, and the accuracy of disease classification has increased significantly from less than 35% to more than 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González-Villà, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., Lladó, X.: A review on brain structures segmentation in magnetic resonance imaging. Artif. Intell. Med. 73, 45–69 (2016)

    Article  Google Scholar 

  2. Vijayalaxmi, Fatahi, M., Speck, O.: Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat. Res. Mutat. Res. 764, 51–63 (2015)

    Google Scholar 

  3. Visvikis, D., Le Rest, C.C., Jaouen, V., Hatt, M.: Artificial intelligence, machine (deep) learning and radio (geno) mics: definitions and nuclear medicine imaging applications. Eur. J. Nucl. Med. Mol. Imaging 46(13), 2630–2637 (2019)

    Article  Google Scholar 

  4. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838. IEEE, April 2017

    Google Scholar 

  5. Fung, Y.R., Guan, Z., Kumar, R., Wu, J.Y., Fiterau, M.: Alzheimer’s disease brain MRI classification: challenges and insights. arXiv preprint arXiv:1906.04231 (2019)

  6. Nazir, M., Wahid, F., Ali Khan, S.: A simple and intelligent approach for brain MRI classification. J. Intell. Fuzzy Syst. 28(3), 1127–1135 (2015)

    Article  MathSciNet  Google Scholar 

  7. Manjón, J.V., Coupe, P.: MRI denoising using deep learning. In: Bai, W., Sanroma, G., Wu, G., Munsell, B.C., Zhan, Y., Coupé, P. (eds.) Patch-MI 2018. LNCS, vol. 11075, pp. 12–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00500-9_2

    Chapter  Google Scholar 

  8. Vaishali, S., Rao, K.K., Rao, G.S.: A review on noise reduction methods for brain MRI images. In: 2015 International Conference on Signal Processing and Communication Engineering Systems, pp. 363–365. IEEE, January 2015

    Google Scholar 

  9. Yousuf, M.A., Nobi, M.N.: A new method to remove noise in magnetic resonance and ultrasound images. J. Sci. Res. 3(1), 81 (2011)

    Article  Google Scholar 

  10. Doty, F.D., Entzminger, G., Kulkarni, J., Pamarthy, K., Staab, J.P.: Radio frequency coil technology for small-animal MRI. NMR Biomed.: Int. J. Devot. Dev. Appl. Magn. Reson. In vivo 20(3), 304–325 (2007)

    Article  Google Scholar 

  11. Hong, D., Huang, C., Yang, C., Li, J., Qian, Y., Cai, C.: FFA-DMRI: a network based on feature fusion and attention mechanism for brain MRI denoising. Front. Neurosci. 14, 934 (2020)

    Article  Google Scholar 

  12. Coupé, P., Manjón, J.V., Gedamu, E., Arnold, D., Robles, M., Collins, D.L.: Robust Rician noise estimation for MR images. Med. Image Anal. 14(4), 483–493 (2010)

    Article  Google Scholar 

  13. Panda, A., Naskar, R., Rajbans, S., Pal, S.: A 3D wide residual network with perceptual loss for brain MRI image denoising. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–7. IEEE, July 2019

    Google Scholar 

  14. Chauhan, N., Choi, B.J.: Denoising approaches using fuzzy logic and convolutional autoencoders for human brain MRI image. Int. J. Fuzzy Logic Intell. Syst. 19(3), 135–139 (2019)

    Article  Google Scholar 

  15. Ran, M., et al.: Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med. Image Anal. 55, 165–180 (2019)

    Article  Google Scholar 

  16. Liu, Z., Bai, X., Liu, H., Zhang, Y.: Multiple-surface-approximation-based FCM with interval memberships for bias correction and segmentation of brain MRI. IEEE Trans. Fuzzy Syst. 28(9), 2093–2106 (2019)

    Article  Google Scholar 

  17. Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P., Mozaffari, S.: A level set method based on domain transformation and bias correction for MRI brain tumor segmentation. J. Neurosci. Methods 352, 109091 (2021)

    Article  Google Scholar 

  18. Bouhrara, M., Bonny, J.M., Ashinsky, B.G., Maring, M.C., Spencer, R.G.: Noise estimation and reduction in magnetic resonance imaging using a new multispectral nonlocal maximum-likelihood filter. IEEE Trans. Med. Imaging 36(1), 181–193 (2016)

    Article  Google Scholar 

  19. Zhang, Y., Liu, J., Li, M., Guo, Z.: Joint image denoising using adaptive principal component analysis and self-similarity. Inf. Sci. 259, 128–141 (2014)

    Article  Google Scholar 

  20. Manjón, J.V., Coupé, P., Buades, A.: MRI noise estimation and denoising using non-local PCA. Med. Image Anal. 22(1), 35–47 (2015)

    Article  Google Scholar 

  21. Bazin, P.L., Alkemade, A., van der Zwaag, W., Caan, M., Mulder, M., Forstmann, B.U.: Denoising high-field multi-dimensional MRI with local complex PCA. Front. Neurosci. 13, 1066 (2019)

    Article  Google Scholar 

  22. Mukherjee, P.S., Qiu, P.: Efficient bias correction for magnetic resonance image denoising. Stat. Med. 32(12), 2079–2096 (2013)

    Article  MathSciNet  Google Scholar 

  23. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017)

    Article  Google Scholar 

  24. Despotović, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. (2015)

    Google Scholar 

  25. Dolz, J., Desrosiers, C., Wang, L., Yuan, J., Shen, D., Ayed, I.B.: Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. Comput. Med. Imaging Graph. 79, 101660 (2020)

    Article  Google Scholar 

  26. Moeskops, P., Pluim, J.P.: Isointense infant brain MRI segmentation with a dilated convolutional neural network. arXiv preprint arXiv:1708.02757 (2017)

    Google Scholar 

  27. Chen, L., Wu, Y., DSouza, A.M., Abidin, A.Z., Wismüller, A., Xu, C.: MRI tumor segmentation with densely connected 3D CNN. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105741F. International Society for Optics and Photonics, March 2018

    Google Scholar 

  28. Billot, B., Greve, D., Van Leemput, K., Fischl, B., Iglesias, J.E., Dalca, A.V.: A learning strategy for contrast-agnostic MRI segmentation. arXiv preprint arXiv:2003.01995 (2020)

    Google Scholar 

  29. Moeskops, P., Veta, M., Lafarge, M.W., Eppenhof, K.A.J., Pluim, J.P.W.: Adversarial training and dilated convolutions for brain MRI segmentation. In: Cardoso, M.J., Arbel, T., Carneiro, G., Syeda-Mahmood, T., Tavares, J.M.R.S., Moradi, M., Bradley, A., Greenspan, H., Papa, J.P., Madabhushi, A., Nascimento, J.C., Cardoso, J.S., Belagiannis, V., Lu, Z. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 56–64. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_7

    Chapter  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access (2021)

    Google Scholar 

  32. Kolařík, M., Burget, R., Uher, V., Dutta, M.K.: 3D Dense-U-Net for MRI brain tissue segmentation. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), pp. 1–4. IEEE, July 2018

    Google Scholar 

  33. Zhang, Z., Wu, C., Coleman, S., Kerr, D.: DENSE-INception U-Net for medical image segmentation. Comput. Methods Programs Biomed. 192, 105395 (2020)

    Article  Google Scholar 

  34. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

  35. Rehman, M.U., Cho, S., Kim, J.H., Chong, K.T.: BU-Net: brain tumor segmentation using modified U-Net architecture. Electronics 9(12), 2203 (2020)

    Article  Google Scholar 

  36. Dinsdale, N.K., Jenkinson, M., Namburete, A.I.: Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage 228, 117689 (2021)

    Article  Google Scholar 

  37. Pearson, K.: On lines and planes of closest fit to systems of points in space (PDF). Phil. Mag. 2(11), 559–572 (1901). https://doi.org/10.1080/14786440109462720

    Article  MATH  Google Scholar 

  38. Kumar, V., Sachdeva, J., Gupta, I., Khandelwal, N., Ahuja, C.K.: Classification of brain tumors using PCA-ANN. In: 2011 World Congress on Information and Communication Technologies, pp. 1079–1083. IEEE, December 2011

    Google Scholar 

  39. Ahmadi, M., Sharifi, A., Jafarian Fard, M., Soleimani, N.: Detection of brain lesion location in MRI images using convolutional neural network and robust PCA. Int. J. Neurosci. 1–12 (2021)

    Google Scholar 

  40. Irzan, H., Hütel, M., Semedo, C., O’Reilly, H., Sahota, M., Ourselin, S., Marlow, N., Melbourne, A.: A network-based analysis of the preterm adolescent brain using PCA and graph theory. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds.) Computational Diffusion MRI. MV, pp. 173–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52893-5_15

    Chapter  Google Scholar 

  41. Vijay, K., Selvakumar, K.: Brain fMRI clustering using interaction K-means algorithm with PCA. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0909–0913. IEEE, April 2015

    Google Scholar 

  42. Kaya, I.E., Pehlivanlı, A.Ç., Sekizkardeş, E.G., Ibrikci, T.: PCA based clustering for brain tumor segmentation of T1w MRI images. Comput. Methods Programs Biomed. 140, 19–28 (2017)

    Article  Google Scholar 

  43. Al-Masni, M.A., Kim, D.H.: CMM-Net: contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci. Rep. 11(1), 1–18 (2021)

    Article  Google Scholar 

  44. Khagi, B., Kwon, G.R.: 3D CNN design for the classification of Alzheimer’s disease using brain MRI and PET. IEEE Access (2020)

    Google Scholar 

  45. Hu, M., Sim, K., Zhou, J.H., Jiang, X., Guan, C.: Brain MRI-based 3D convolutional neural networks for classification of schizophrenia and controls. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1742–1745. IEEE, July 2020

    Google Scholar 

  46. Bhanumathi, V., Sangeetha, R.: CNN based training and classification of MRI brain images. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), pp. 129–133. IEEE, March 2019

    Google Scholar 

  47. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  48. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded by National Science and Technology Council grant number MOST 108-3111-Y-042A-117, 111-1401-01-27-01, 111-2221-E-005-086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Jia-Ching Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, J.JC. et al. (2022). A Deep Learning Framework for Removing Bias from Single-Photon Emission Computerized Tomography. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22064-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22063-0

  • Online ISBN: 978-3-031-22064-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics