Abstract
The Internet shopping optimization problem (IShOP) is an NP-hard combinatorial problem, which minimizes the total cost of shopping a list of products available in a set of shops on the Internet, considering the product price plus the shipping costs. With the advent of electronic commerce and the incredible popularity of Internet transactions, IShOP has become a problem of great relevance today in modern society with several variations of the practical problem application. This chapter reviews the different approaches applied to solve the problem. We review the used models, the solution methods, and the instances used to analyze the performance algorithms. Finally, we identify the main current and future research trends.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Musial, J. Pecero, B. Dorronsoro, J. Blazewicz, Internet shopping optimization project (IShOP), in European IST Projects, p. 16 (2014)
M.C. López-Locés, J. Musial, J.E. Pecero, H.J. Fraire-Huacuja, J. Blacewicz, P. Bouvry, Exact and heuristic approaches to solve the Internet shopping optimization problem with delivery costs. Int. J. Appl. Math. Comput. Sci. 26(2), 391–406 (2016)
J. Musial, Applications of Combinatorial Optimization for Online Shopping. NAKOM, Poznán (2012)
J. Błażewicz, M.Y. Kovalyov, J. Musiał, A.P. Urbański, A. Wojciechowski, Internet shopping optimization problem. Int. J. Appl. Math. Comput. Sci. 20(2), 385–390 (2010). https://doi.org/10.2478/v10006-010-0028-0
M. Gen, R. Cheng, Genetic Algorithms & Engineering Optimization (Wiley, New York, 2000)
M.C. López-Locés, K. Rege, J.E. Pecero, P. Bouvry, H.J.F. Huacuja, Trajectory metaheuristics for the internet shopping optimization problem, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization (Springer, Cham. 2015), pp. 527–536
A. Wojciechowski, J. Musial, Towards optimal multi-item shopping basket management: heuristic approach, in On the Move to Meaningful Internet Systems: OTM 2010 Workshops, ed by R. Meersman et al. Lecture Notes in Computer Science, Vol. 6428. (Springer, Berlin, 2010), pp. 349–357
S. Verma, A. Sinha, P. Kumar, A. Maitin, Optimizing online shopping using genetic algorithm, in 2020 3rd International Conference on Information and Computer Technologies (ICICT) (IEEE, 2020), pp. 271–275
H. Sayyaadi, A. Sadollah, A. Yadav, N. Yadav, Stability and iterative convergence of water cycle algorithm for computationally expensive and combinatorial Internet shopping optimization problems. J. Exp. Theor. Artif. Intell. 1–21 (2018)
H.J.F. Huacuja, M.Á.G. Morales, M.C.L. Locés, C.G.G. Santillán, L.C. Reyes, M.L.M. Rodríguez, Optimization of the internet shopping problem with shipping costs, in Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications (Springer, Cham, 2021), pp. 249–255
J. Musial, J.E. Pecero, M.C. Lopez-Loces, H.J. Fraire-Huacuja, P. Bouvry, J. Blazewicz, Algorithms solving the Internet shopping optimization problem with price discounts. Bull. Pol. Acad. Sci. Tech. Sci. 505–516 (2016)
J. Błażewicz, J. Musiał, E-commerce evaluation–multi-item Internet shopping. Optimization and heuristic algorithms, in Operations Research Proceedings 2010, ed. by B. Hu, et al. (Springer, Berlin, 2011), pp. 149–154
J. Józefczyk, M. Ławrynowicz, Heuristic algorithms for the Internet shopping optimization problem with price sensitivity discounts. Kybernetes 47(4), 831–852 (2018)
J. Blazewicz, N. Cheriere, P.F. Dutot, J. Musial, D. Trystram, Novel dual discounting functions for the Internet shopping optimization problem: new algorithms. J. Sched. 19(3), 245–255 (2016)
A. Sadollah, K. Gao, A. Barzegar, R. Su, Improved model of combinatorial Internet shopping optimization problem using evolutionary algorithms, in 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV) (IEEE, 2016), pp. 1–5
F. Orciuoli, M. Parente, A. Vitiello, Solving the shopping plan problem through bio-inspired approaches. Soft. Comput. 20(5), 2077–2089 (2016)
G. D’Aniello, M. Gaeta, V. Loia, F. Orciuoli, An ami-based software architecture enabling evolutionary computation in blended commerce: the shopping plan application. Mobile Inf. Syst. (2015)
G. D'Aniello, F. Orciuoli, M. Parente, A. Vitiello, Enhancing an AmI-based framework for u-commerce by applying memetic algorithms to plan shopping, in 2014 International Conference on Intelligent Networking and Collaborative Systems (IEEE, 2014), pp. 169–175
M. Gaeta, V. Loia, F. Orciuoli, M. Parmentola, A genetic approach to plan shopping in the AmI-based blended commerce, in 2013 IEEE International Symposium on Industrial Electronics (IEEE, 2013), pp. 1–6
J. Marszaªkowski, Budgeted Internet Shopping Optimization Problem (2015)
J. Blazewicz, P. Bouvry, M.Y. Kovalyov, J. Musial, Internet shopping with price sensitive discounts. 4OR-A Q. J. Oper. Res. 12(1), 35–48 (2014a)
J. Musial, M.C. Lopez-Loces, Trustworthy online shopping with price impact. Found. Comput. Decis. Sci. 42(2), 121–136 (2017)
J.B. Chung, Internet shopping optimization problem with delivery constraints. J. Distrib. Sci. 15(2), 15–20 (2017)
Acknowledgements
Authors thanks to CONACYT for supporting the projects from (a) Cátedras CONACYT Program with Number 3058. (b) CONACYT Project with Number A1-S-11012 from Convocatoria de Investigación Científica Básica 2017–2018 and CONACYT Project with Number 312397 from Programa de Apoyo para Actividades Científicas, Tecnológicas y de Innovación (PAACTI), a efecto de participar en la Convocatoria 2020-1 Apoyo para Proyectos de Investigación Científica, Desarrollo Tecnológico e Innovación en Salud ante la Contingencia por COVID-19. (c) M.A. García Morales would like to thank CONACYT for the support number 658787. Also H. Fraire thank to Tecnológico Nacional de México for the support to the project 10362.21-P.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Morales, M.Á.G., Huacuja, H.J.F., Solís, J.F., Reyes, L.C., Santillán, C.G.G. (2023). A Survey of Models and Solution Methods for the Internet Shopping Optimization Problem. In: Castillo, O., Melin, P. (eds) Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design. Studies in Computational Intelligence, vol 1061. Springer, Cham. https://doi.org/10.1007/978-3-031-22042-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-22042-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22041-8
Online ISBN: 978-3-031-22042-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)