Skip to main content

Boggle: An SSVEP-Based BCI Web Browser

  • Conference paper
  • First Online:
Computer-Human Interaction Research and Applications (CHIRA 2020)

Abstract

Brain-Computer Interfaces (BCIs) have led to significant enhancements in the lives of physically-restricted individuals. BCIs based on Steady State Visually Evoked Potentials (SSVEPs) are robust and rely on a neuronal response evoked when a person focuses attention onto a flickering visual stimulus. Our first study [5], which provided empirical insights on web technologies’ applicability for SSVEP stimuli-generation, demonstrated that both Cascading Style Sheets (CSS) and Web Graphics Library (WebGL) can produce effective stimuli via square wave approximations, using Google Chrome and Mozilla Firefox. Building upon these findings, this work explores the feasibility of adopting these technologies to implement an SSVEP-driven web browser, supporting online and asynchronous BCI-based control. Informed by a systematic review of literature and a succession of user-centred studies, this paper discusses results produced throughout the development of Boggle - a novel SSVEP-based BCI web-browser. As for in-browser stimuli-generation, enhanced stimuli efficacy was observed when adopting a custom-developed CSS-based stimuli-generator on Chrome, particularly in high-load rendering conditions. In turn, this contributed to increased classification accuracy and Information Transfer Rates (ITRs), compared to other BCI-based browsers. When evaluated within an online, asynchronous BCI context, participants achieved a global mean classification accuracy and ITR of 90.98% and 29.58 Bits Per Minute (BPM) respectively. Moreover, various usability tests were adopted to gauge progress throughout the different iterations. Boggle is the first cross-platform, SSVEP-based BCI browser that is fully developed using web-native technologies, and which exploits approximation techniques for stimuli-generation. Feedback provided by domain experts further highlights Boggle’s suitability as a primary assistive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Products developed by g.tec [13].

  2. 2.

    Stimulus content refers to text/images contained within a stimulus, which could either be non-flickering or else flickering at the same rate as the stimulus’ background.

References

  1. Abe, K., Owada, K., Ohi, S., Ohyama, M.: A system for web browsing by eye-gaze input. Electron. Commun. Jpn. 91(5), 11–18 (2008)

    Article  Google Scholar 

  2. Bensch, M., et al.: Nessi: an EEG-controlled web browser for severely paralyzed patients. Comput. Intell. Neurosci. 2007 (2007)

    Google Scholar 

  3. Bose, J., Singhai, A., Patankar, A.A., Kumar, A.: Attention sensitive web browsing. In: Proceedings of the 9th Annual ACM India Conference, pp. 147–152 (2016)

    Google Scholar 

  4. Brumberg, J.S., Pitt, K.M., Mantie-Kozlowski, A., Burnison, J.D.: Brain-computer interfaces for augmentative and alternative communication: a tutorial. Am. J. Speech Lang. Pathol. 27(1), 1–12 (2018)

    Article  Google Scholar 

  5. Camilleri, A., Porter, C., Camilleri, T.: Towards accurate browser-based SSVEP stimuli generation. In: Proceedings of the 4th International Conference on Computer-Human Interaction Research and Applications, vol. 1, pp. 74–83. CHIRA. INSTICC, SciTePress (2020). https://doi.org/10.5220/0010159400740083

  6. Chen, X., Wang, Y., Gao, S., Jung, T.P., Gao, X.: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J. Neural Eng. 12(4), 046008 (2015)

    Article  Google Scholar 

  7. Ci, B., Rule, R.O.: Confidence intervals. Lancet 1(8531), 494–497 (1987)

    Google Scholar 

  8. Dentzel, Z.: How the internet has changed everyday life. Change: 19 Key Essays on How the Internet is Changing Our Lives (2013)

    Google Scholar 

  9. Di Russo, F., Spinelli, D.: Electrophysiological evidence for an early attentional mechanism in visual processing in humans. Vision. Res. 39(18), 2975–2985 (1999)

    Article  Google Scholar 

  10. Electron: Electron. https://www.electronjs.org/. Accessed 24 June 2021

  11. Friman, O., Volosyak, I., Graser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans. Biomed. Eng. 54(4), 742–750 (2007)

    Article  Google Scholar 

  12. Gembler, F., Stawicki, P., Volosyak, I.: Suitable number of visual stimuli for SSVEP-based BCI spelling applications. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 441–452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_38

    Chapter  Google Scholar 

  13. Guger Technologies: g.tec. https://www.gtec.at/. Accessed 26 June 2021

  14. Ä°Ĺźcan, Z., Nikulin, V.V.: Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. PLoS ONE 13(1), e0191673 (2018)

    Article  Google Scholar 

  15. Nielsen, J.: Usability 101: introduction to usability. https://www.nngroup.com/articles/usability-101-introduction-to-usability/. Accessed 28 June 2021

  16. Sauro, J.: 10 things to know about the single ease question (SEQ). https://measuringu.com/seq10/. Accessed 15 July 2021

  17. Sauro, J.: Measuring usability with the system usability scale (SUS). https://measuringu.com/sus/. Accessed 11 July 2021

  18. Sauro, J.: Measuring user confidence in usability tests. https://measuringu.com/measuring-confidence/. Accessed 12 July 2021

  19. Sauro, J.: What is a good task-completion rate? https://measuringu.com/task-completion/. Accessed 17 July 2021

  20. Juang, K., Jasen, F., Katrekar, A., Ahn, J., Duchowski, A.T.: Use of eye movement gestures for web browsing. Computer Science Department, Clemson University, p. 7 (2005). Available as early as Jan 1

    Google Scholar 

  21. Karim, A.A., et al.: Neural internet: web surfing with brain potentials for the completely paralyzed. Neurorehabil. Neural Repair 20(4), 508–515 (2006)

    Google Scholar 

  22. King, A., Evans, G., Blenkhorn, P.: WebbIE: a web browser for visually impaired people. In: Proceedings of the 2nd Cambridge Workshop on Universal Access and Assistive Technology, Springer-Verlag, London, UK, pp. 35–44. Citeseer (2004)

    Google Scholar 

  23. Kumar, C., Menges, R., Müller, D., Staab, S.: Chromium based framework to include gaze interaction in web browser. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 219–223 (2017)

    Google Scholar 

  24. Leeb, R., Friedman, D., MĂĽller-Putz, G.R., Scherer, R., Slater, M., Pfurtscheller, G.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 2007 (2007)

    Google Scholar 

  25. Liu, Y., et al.: Implementation of SSVEP based BCI with Emotiv EPOC. In: 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 34–37. IEEE (2012)

    Google Scholar 

  26. Mankoff, J., Dey, A., Batra, U., Moore, M.: Web accessibility for low bandwidth input. In: Proceedings of the Fifth International ACM Conference on Assistive Technologies, pp. 17–24 (2002)

    Google Scholar 

  27. Mugler, E.M., Ruf, C.A., Halder, S., Bensch, M., Kubler, A.: Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 599–609 (2010)

    Article  Google Scholar 

  28. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  29. Nooh, A.A., Yunus, J., Daud, S.M.: A review of asynchronous electroencephalogram-based brain computer interface systems. In: International Conference on Biomedical Engineering and Technology IPCBEE, vol. 11, pp. 55–59 (2011)

    Google Scholar 

  30. Porta, M., Ravelli, A.: WeyeB, an eye-controlled web browser for hands-free navigation. In: 2009 2nd Conference on Human System Interactions, pp. 210–215. IEEE (2009)

    Google Scholar 

  31. Rezazadeh, Z., Sheikhani, A.: An SSVEP-based brain-computer interface to navigate in a virtual home. In: Proceedings of the 7th International Conference on Bioscience, Biochemistry and Bioinformatics, pp. 22–27 (2017)

    Google Scholar 

  32. Rutter, R., et al.: Web Accessibility: Web Standards and Regulatory Compliance. Apress, Berkeley (2007)

    Google Scholar 

  33. Saboor, A., Benda, M., Gembler, F., Volosyak, I.: Word prediction support model for SSVEP-based BCI web speller. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11506, pp. 430–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_36

    Chapter  Google Scholar 

  34. Saboor, A., et al.: A browser-driven SSVEP-based BCI web speller. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 625–630. IEEE (2018)

    Google Scholar 

  35. Salkind, N.J.: Encyclopedia of Research Design, vol. 1. Sage (2010)

    Google Scholar 

  36. Schlogl, A., Kronegg, J., Huggins, J., Mason, S.: 19 evaluation criteria for BCI research. Toward Brain-Comput. Interfacing 327 (2007)

    Google Scholar 

  37. Seltman, H.J.: Experimental design and analysis (2012)

    Google Scholar 

  38. Speier, W., Arnold, C., Pouratian, N.: Evaluating true BCI communication rate through mutual information and language models. PLoS ONE 8(10), e78432 (2013)

    Article  Google Scholar 

  39. Teplan, M., et al.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  40. Tomori, O., Moore, M.: The neurally controllable internet browser (BrainBrowser). In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, pp. 796–797 (2003)

    Google Scholar 

  41. Vella, D.: Investigating gaze interaction usability for web browsing. B.S. thesis, University of Malta (2019)

    Google Scholar 

  42. Walter, S., Quigley, C., Andersen, S.K., Mueller, M.M.: Effects of overt and covert attention on the steady-state visual evoked potential. Neurosci. Lett. 519(1), 37–41 (2012)

    Article  Google Scholar 

  43. Wolpaw, J.R., et al.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  44. Yehia, A.G., Eldawlatly, S., Taher, M.: WeBB: a brain-computer interface web browser based on steady-state visual evoked potentials. In: 2017 12th International Conference on Computer Engineering and Systems (ICCES), pp. 52–57. IEEE (2017)

    Google Scholar 

  45. Yin, J., Jiang, D., Hu, J.: Design and application of brain-computer interface web browser based on VEP. In: International Conference on Future BioMedical Information Engineering. FBIE 2009, pp. 77–80. IEEE (2009)

    Google Scholar 

  46. Zerafa, R., Camilleri, T., Bartolo, K., Camilleri, K.P., Falzon, O.: Reducing the training time for the SSVEP-based music player application. Biomed. Phys. Eng. Express 3(3), 034001 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Camilleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camilleri, A., Porter, C., Camilleri, T. (2022). Boggle: An SSVEP-Based BCI Web Browser. In: Holzinger, A., Silva, H.P., Helfert, M., Constantine, L. (eds) Computer-Human Interaction Research and Applications. CHIRA 2020. Communications in Computer and Information Science, vol 1609. Springer, Cham. https://doi.org/10.1007/978-3-031-22015-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22015-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22014-2

  • Online ISBN: 978-3-031-22015-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics