Skip to main content

Full Wave Inversion and Inverse Scattering in Ultrasound Tomography/Volography

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1403))

  • 519 Accesses

Abstract

Ultrasound breast tomography has been around for more than 40 years. Early approaches to reconstruction focused on simple algebraic reconstructions and bent ray techniques. These approaches were not able to provide high-quality and high spatial-resolution images. The advent of inverse scattering approaches resulted in a shift in image reconstruction approaches for breast tomography and a subsequent improvement in image quality. Full wave inverse solvers were developed to improve the reconstruction times without sacrificing image quality. The development of GPUs has markedly decreased the time for reconstruction using inverse scatting approaches. The development of fully 3D image solvers and hardware capable of capturing out of plane scattering have resulted in further improvement in breast tomography. This chapter discusses the state-of-the-art in ultrasound breast tomography, its history, the theory behind inverse scattering, approximations that are included to improve convergence, 3D image reconstruction, and hardware implementation of the constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note: The references are inadequate due to the fast-growing nature of the field. However, hopefully they will aid the reader in beginning their investigation in ultrasound tomography/volography, and any omissions do not reflect the quality of the work being done in this area by numerous research groups.

References

Note: The references are inadequate due to the fast-growing nature of the field. However, hopefully they will aid the reader in beginning their investigation in ultrasound tomography/volography, and any omissions do not reflect the quality of the work being done in this area by numerous research groups.

  • Andre M, Janee H, Otto G, Martin P, Spivey B, Palmer D (1997) High speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays. Int J Imaging Syst Technol 8:137–147

    Article  Google Scholar 

  • Devaney AJ (2012) Angular-spectrum and multipole expansions. Mathematical foundations of imaging, tomography and wavefield inversion. Cambridge University Press, Cambridge, pp 118–168

    Google Scholar 

  • Babapour S, Lakestani M, Fatholahzadeh A (2021) AFISTA: accelerated FISTA for sparse signal recovery and compressive sensing. Multimed Tools Appl 80:20707–20731

    Article  Google Scholar 

  • Chambolle A (2004) An algorithm for Total variation minimization and applications. J Math Imaging Vision 20:89–97

    Article  Google Scholar 

  • Cheney M, Rose JH, Defacio B (1989) A new equation of scattering theory and its use in inverse scattering. Wave Motion 11:175–184

    Article  Google Scholar 

  • Chew WC, Wang YM (1990) Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans Med Imaging 9:218–225

    Article  CAS  PubMed  Google Scholar 

  • Colton D, Kress R (1992) Inverse acoustic and electromagnetic scattering theory. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Devaney AJ (1982) A filtered backpropagation algorithm for diffraction tomography. Ultrason Imaging 4:336–350

    Article  CAS  PubMed  Google Scholar 

  • Devaney AJ, Oristaglio ML (1983) Inversion procedure for inverse scattering within the distorted-wave born approximation. Phys Rev Lett 51:237–240

    Article  Google Scholar 

  • Duric N, Littrup PJ, Holsapple E, Babkin A, Duncan R, Kalinin A et al (2003) Ultrasound tomography of breast tissue. In: Medical imaging 2003: ultrasonic imaging and signal processing, pp 24–32

    Chapter  Google Scholar 

  • Duric N, Littrup P, Babkin A, Chambers D, Azevedo S, Kalinin A et al (2005) Development of ultrasound tomography for breast imaging: technical assessment. Med Phys 32:1375–1386

    Article  PubMed  Google Scholar 

  • Duric ND, Li C, Littrup P, Huang L, Glide-Hurst CK, Ramsa O et al (2009) Detection and characterization of breast masses with ultrasound tomography: clinical results. In: Medical imaging 2009: ultrasonic imaging, tomography and therapy. SPIE 72651G: detection and characterization of breast masses with ultrasound tomography: clinical results, pp 1–8

    Google Scholar 

  • Duric N, Littrup P, Roy O, Schmidt S, Li C, Bey-Knight L et al (2013) Breast imaging with ultrasound tomography: initial results with SoftVue. In: 2013 IEEE International Ultrasonics Symposium (IUS), pp 382–385

    Chapter  Google Scholar 

  • Fan Y, Wang H, Gemmeke H, Hopp T, Hesser J (2021) DDN: dual domain network architecture for non-linear ultrasound transmission tomography reconstruction, vol 11602. SPIE

    Google Scholar 

  • Greenleaf JF, Johnson SA, Lee SL, Herman GT, Woo EH (1974) Algebraic reconstruction of spatial distributions of acoustic absorption within tissue from their two-dimensional acoustic projections. In: Green PS (ed) Acoustical holography: volume 5. Springer, Boston, pp 591–603

    Chapter  Google Scholar 

  • Greenleaf JF, Johnson SA, Samayoa WF, Duck FA (1975) Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time-of-flight profiles. In: Booth N (ed) Acoustical holography: volume 6. Springer, Boston, pp 71–90

    Chapter  Google Scholar 

  • Guasch L, Calderón Agudo O, Tang M-X, Nachev P, Warner M (2020) Full-waveform inversion imaging of the human brain. npj Digit Med 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohage T (2001) On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Prob 17:1743–1763

    Article  Google Scholar 

  • Huthwaite P, Simonetti F, Duric N (2012) Combining time of flight and diffraction tomography for high resolution breast imaging: initial invivo results (l). J Acoust Soc Am 132:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Jirik R, Peterlik I, Ruiter N, Fousek J, Dapp R, Zapf M et al (2012) Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography. IEEE Trans Ultrason Ferroelectr Freq Control 59:254–264

    Article  PubMed  Google Scholar 

  • Johnson SA, Tracy ML (1983) Inverse scattering solutions by a Sinc basis, multiple source, moment method – part I: theory. Ultrason Imaging 5:361–375

    Article  CAS  PubMed  Google Scholar 

  • Johnson SA, Stenger F, Wilcox C, Ball J, Berggren MJ (1982) Wave equations and inverse solutions for soft tissue. In: Powers JP (ed) Acoustical imaging. Springer, Boston, pp 409–424

    Chapter  Google Scholar 

  • Johnson SA, Borup DT, Berggren MJ, Wiskin JW, Eidens R (1992) Modeling of inverse scattering and other tomographic algorithms in conjunction with wide bandwidth acoustic transducer arrays for towed or autonomous sub-bottom imaging systems. In: OCEANS 92 proceedings@m_Mastering the Oceans through technology, pp 294–299

    Chapter  Google Scholar 

  • Kay I, Moses HE (1961) The determination of the scattering potential from the spectral measure function. Il Nuovo Cimento (1955–1965) 22:689–705

    Article  Google Scholar 

  • Kirsch A (1996) An introduction to the mathematical theory of inverse problems. Springer, New York

    Book  Google Scholar 

  • Lavarello R, Oelze M (2007) A study on the reconstruction of moderate contrast targets using the distorted born iterative method. IEEE Trans Ultrason Ferroelectr Freq Control 55:112–124

    Article  Google Scholar 

  • Lavarello RJ, Oelze ML (2009a) Density imaging using inverse scattering. J Acoust Soc Am 125:793–802

    Article  PubMed  Google Scholar 

  • Lavarello RJ, Oelze M (2009b) Tomographic reconstruction of three dimensional volumes using the distorted born approximation. IEEE Trans Med Imaging 28:1643–1653

    Article  PubMed  Google Scholar 

  • Li C, Duric N (2013) Resolution limitation of travel time tomography: beyond the first Fresnel zone, pp 86751D–86751D-10. https://doi.org/10.1117/12.2006978

  • Li C, Duric N, Littrup P, Huang L (2009) In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med Biol 35:1615–1628

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik B, Terry R, Wiskin J, Lenox M (2018) Quantitative transmission ultrasound tomography: imaging and performance characteristics. Med Phys 45:3063–3075

    Article  PubMed  Google Scholar 

  • Malik B, Iuanow E, Klock J (2020) An exploratory multi-reader, multi-case study comparing transmission ultrasound to mammography on recall rates and detection rates for breast cancer lesions. Acad Radiol 29(Suppl 1):S10–S18

    PubMed  Google Scholar 

  • Matthews TP, Wang K, Li C, Duric N, Anastasio MA (2017) Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography. IEEE Trans Ultrason Ferroelectr Freq Control 64:811–825

    Article  PubMed  PubMed Central  Google Scholar 

  • Natterer F, Wubbeling F (1995) A propagation-backpropagation method for ultrasound tomography. Inverse Prob 11:1225–1232

    Article  Google Scholar 

  • Newton RG (1966) Scattering theory of waves and particles. The University of Michigan

    Google Scholar 

  • Ozmen N, Dapp R, Zapf M, Gemmeke H, Ruiter NV, Van Dongen KWA (2015) Comparing different ultrasound imaging methods for breast cancer detection. IEEE Trans Ultrason Ferroelectr Freq Control 62:637–646

    Article  PubMed  Google Scholar 

  • Pratt RG, Shin C, Hick GJ (1998) Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophys J Int 133:341–362

    Article  Google Scholar 

  • Remis RF, van den Berg PM (2000) On the equivalence of the Newton-Kantorovich and distorted Born methods. Inverse Prob 16:L1–L4

    Article  Google Scholar 

  • Rodriguez-Ruiz A, Teuwen J, Vreemann S, Bouwman RW, van Engen RE, Karssemeijer N et al (2018) New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers. Acta Radiol 59:1051–1059

    Article  PubMed  Google Scholar 

  • Ruiter NV, Zapf M, Hopp T, Dapp R, Kretzek E, Birk M et al (2012) 3D ultrasound computer tomography of the breast: a new era? Eur J Radiol 81:S133–S134

    Article  PubMed  Google Scholar 

  • Sandhu GY, Li C, Roy O, Schmidt S, Duric N (2015) Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer. Phys Med Biol 60:5381–5398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich IE, Zunino A, Boehm C, Fichtner A (2021) Sparsifying regularizations for stochastic sample average minimization in ultrasound computed tomography, vol 11602. SPIE

    Google Scholar 

  • Van Dongen KWA, Wright WMD (2006) A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging. J Acoust Soc Am 120:2086–2095

    Article  PubMed  Google Scholar 

  • Wallis G (1981) Lamb, G. L., jr., Elements of soliton theory, New York-Chichester-Brisbane-Toronto, John Wiley & Sons 1980, XII, 289 S., £ 16.00. ISBN 0-471-04559-4. ZAMM – J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 61:603–603

    Article  Google Scholar 

  • Wang K, Matthews T, Anis F, Li C, Duric N, Anastasio MA (2015) Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography. IEEE Trans Ultrason Ferroelectr Freq Control 62:475–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Ye JC, Mueller K, Fessler JA (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37:1289–1296

    Article  PubMed  Google Scholar 

  • Wiskin J (2022) Ultrasound tomography as a gauge invariant fully connected convolutional neural network: repercussions. SPIE, PC12038

    Google Scholar 

  • Wiskin J, Johnson SA, Borup DT, Berggren M, Eidens R (1993) Full inverse scattering vs. born-like approximation for imaging in a stratified Ocean. Proceedings of OCEANS ‘93 453:450–455

    Google Scholar 

  • Wiskin JW, Borup DT, Johnson SA (1997) Inverse scattering from arbitrary two-dimensional objects in stratified environments via a Green’s operator. J Acoust Soc Am 102:853–864

    Article  Google Scholar 

  • Wiskin J, Borup DT, Johnson SA, Berggren M (2012) Non-linear inverse scattering: high resolution quantitative breast tissue tomography. J Acoust Soc Am 131:3802–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiskin JW, Borup DT, Iuanow E, Klock J, Lenox MW (2017) 3-D nonlinear acoustic inverse scattering: algorithm and quantitative results. IEEE Trans Ultrason Ferroelectr Freq Control 64:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Wiskin J, Malik B, Borup D, Pirshafiey N, Klock J (2020) Full wave 3D inverse scattering transmission ultrasound tomography in the presence of high contrast. Sci Rep 10:20166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiskin J et al (in press) Whole body imaging using low frequency transmission ultrasound. Acad Radiol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Wiskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiskin, J. (2023). Full Wave Inversion and Inverse Scattering in Ultrasound Tomography/Volography. In: Mamou, J., Oelze, M.L. (eds) Quantitative Ultrasound in Soft Tissues. Advances in Experimental Medicine and Biology, vol 1403. Springer, Cham. https://doi.org/10.1007/978-3-031-21987-0_10

Download citation

Publish with us

Policies and ethics