Skip to main content

Remote Sensing Through Satellites and Sensor Networks

  • Chapter
  • First Online:
Women in Telecommunications

Part of the book series: Women in Engineering and Science ((WES))

  • 190 Accesses

Abstract

This chapter discusses the role of remote sensing (RS) in observing and monitoring our planet, with a specific focus on satellite RS and RS through the use of networked sensors (fixed or mobile). Some history of the development of these systems over the years is first presented. Next, several applications are analyzed, and the advantages and disadvantages of processing of data collected from satellite platforms or sensor networks are highlighted. A combination of heterogeneous data from different sources is also discussed. Finally, present and future trends, employing algorithms of artificial intelligence (AI) and in particular of machine learning (ML) in RS data processing, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addabbo P, di Bisceglie M, Focareta M, Galdi C, Maffei C, Ullo SL (2015) Combination of LANDSAT and EROS-B satellite images with GPS and LiDAR data for land monitoring. A case study: the Sant’Arcangelo Trimonte dump. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), pp 882–885

    Google Scholar 

  • Addabbo P, Focareta M, Marcuccio S, Votto C, Ullo S (2016) Land cover classification and monitoring through multisensor image and data combination. In 2016 IEEE international geoscience and remote sensing symposium (IGARSS)

    Google Scholar 

  • Alharbi N, Soh B (2019) Roles and challenges of network sensors in smart cities. In: IOP conference series: earth and environmental science, vol 322, no 1. IOP Publishing, Bristol, p 012002

    Google Scholar 

  • Arco E, Boccardo P, Gandino F, Lingua A, Noardo F, Rebaudengo M (2016) An integrated approach for pollution monitoring: smart acquirement and smart information. In: ISPRS annals of photogrammetry, remote sensing & spatial information sciences, vol 3, no 1

    Google Scholar 

  • Baber S, Siddiqi A, de Weck OL (2020) A quantitative assessment of radiometric calibration errors on crop cover classifications. In: AGU fall meeting 2020. AGU

    Google Scholar 

  • Barbosa M, Siddiqi A, de Weck O (2020) Error scaling with confusion matrices for global optical remote sensing of building and road detection. In: AGU fall meeting abstracts, vol 2020, pp GC058–0004

    Google Scholar 

  • Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press, New York City

    Google Scholar 

  • Capella Space (2021). Available Online: https://www.capellaspace.com/. Accessed 15 Feb 2021

  • Cavallaro G, Willsch D, Willsch M, Michielsen K, Riedel M (2020) Approaching remote sensing image classification with ensembles of support vector machines on the D-Wave quantum annealer. In: International geoscience and remote sensing symposium (IGARSS), pp 1973–1976. https://doi.org/10.1109/IGARSS39084.2020.9323544

  • Chéour R, Jmal MW, Abid M (2018) New combined method for low energy consumption in wireless sensor network applications. Simulation 94(10):873–885

    Article  Google Scholar 

  • Chuvieco E (2016) Fundamentals of satellite remote sensing: an environmental approach. CRC Press, Boca Raton

    Book  Google Scholar 

  • Cicala L, Angelino CV, Fiscante N, Ullo S (2018) Landsat-8 and Sentinel-2 for fire monitoring at a local scale: a case study on vesuvius. In: 2018 IEEE international conference on environmental engineering (EE), pp 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/8385269/

  • Cumming I, Wong F (2005) Digital processing of SAR data. Artech House, Norwood

    Google Scholar 

  • Danielsen AS, Johansen TA, Garrett JL (2021) Self-organizing maps for clustering hyperspectral images on-board a cubesat. Remote Sensing 13(20). [Online]. Available: https://www.mdpi.com/2072-4292/13/20/4174

  • De Corso T, Mignone L, Sebastianelli A, Rosso MPD, Yost C, Ciampa E, Pecce M, Sica S, Ullo S (2020) Application of DInSAR technique to high coherence satellite images for strategic infrastructure monitoring. In: IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium

    Google Scholar 

  • Del Rosso MP, Sebastianelli A, Spiller D, Mathieu PP, Ullo SL (2021a) On-board volcanic eruption detection through cnns and satellite multispectral imagery. Remote Sensing 13(17). [Online]. Available: https://www.mdpi.com/2072-4292/13/17/3479

  • Del Rosso MP, Sebastianelli A, Ullo SL (eds) (2021b) Artificial intelligence applied to satellite-based remote sensing data for earth observation. Institution of Engineering and Technology. https://doi.org/10.1049/PBTE098E

  • Di Martire D, Confuorto P, Frezza A, Ramondini M, Lòpez AV, Pia Del Rosso M, Sebastianelli A, Ullo SL (2018) X- and c-band sar data to monitoring ground deformations and slow-moving landslides for the 2016 manta and portoviejo earthquake (manabi, ecuador). In: 2018 IEEE international conference on environmental engineering (EE), pp 1–6

    Google Scholar 

  • Diana L, Xu J, Fanucci L (2021) Oil spill identification from SAR images for low power embedded systems using CNN. Remote Sensing 13(18). [Online]. Available: https://www.mdpi.com/2072-4292/13/18/3606

  • Di Napoli M, Marsiglia P, Di Martire D, Ramondini M, Ullo SL, Calcaterra D (2020) Landslide susceptibility assessment of wildfire burnt areas through earth-observation techniques and a machine learning-based approach. Remote Sensing 12(15). [Online]. Available: https://www.mdpi.com/2072-4292/12/15/2505

  • Elmustafa SAA, Mujtaba EY (2019) Internet of things in smart environment: concept, applications, challenges, and future directions. World Sci News 134(1):1–51

    Google Scholar 

  • ESA Sentinel Online (2023). https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/satellite-description/orbit

  • Europe’s Copernicus programme (2023). https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Europe_s_Copernicus_programme

  • Filippazzo G (2017) The potential impact of small satellite radar constellations on traditional space systems. In: Proceedings of the 5th federated and fractionated satellite systems workshop, Ithaca, NY, USA

    Google Scholar 

  • Focareta M, Marcuccio S, Ullo S, Votto C Combination of landsat 8 and Sentinel 1 data for the characterization of a site of interest. A case study: the royal palace of caserta. In: 1st international conference on metrology for archaeology

    Google Scholar 

  • Foreman VL, Siddiqi A, De Weck O (2017) Large satellite constellation orbital debris impacts: case studies of oneweb and spacex proposals. In: AIAA SPACE and astronautics forum and exposition, p 5200

    Google Scholar 

  • Foreman V, Siddiqi A, Weck OD (2018) Advantages and limitations of small satellites in low earth orbit constellations: a prospective review. In: Small Satellite Conference, Utah. Available: https://digitalcommons.usu.edu/smallsat/2018/all2018/358/

  • Gawron P, Lewinski S (2020) Multi-spectral image classification with quantum neural networks. In: Proceedings of IGARSS

    Google Scholar 

  • Ghazaryan G, Dubovyk O, Graw V, Schellberg J (2018) Vegetation monitoring with satellite time series: an integrated approach for user-oriented knowledge extraction. In: Neale CMU, Maltese A (eds) Remote sensing for agriculture, ecosystems, and hydrology XX, vol 10783, International society for optics and photonics. SPIE, Cergy-Pontoise, pp 201–209. [Online]. Available: https://doi.org/10.1117/12.2325762

  • Giuffrida G, Fanucci L, Meoni G, Batič M, Buckley L, Dunne A, Van Dijk C, Esposito M, Hefele J, Vercruyssen N, Furano G, Pastena M, Aschbacher J (2021) The Φ-sat-1 mission: the first on-board deep neural network demonstrator for satellite earth observation. IEEE Trans Geosci Remote Sens 60:1–1

    Article  Google Scholar 

  • GSMA (2018) Air quality monitoring using IoT and big data. Available online: https://www.gsma.com/iot/wp-content/uploads/2018/02/iot_clean_air_02_18.pdf

  • Henderson M, Gallina J, Brett M (2020) Methods for accelerating geospatial data processing using quantum computers. arXiv:2004.03079

    Google Scholar 

  • Iceye (2021). Available Online: https://www.iceye.com/ Accessed on 14 Feb 2021

  • iQPS, Inc. (2021) Available Online: https://i-qps.net/tech/. Accessed 19 Feb 2021

  • Jovanovska EM, Davcev D (2020) No pollution smart city sightseeing based on WSN monitoring system. In: 2020 sixth international conference on mobile and secure services (MobiSecServ). IEEE, Piscataway, pp 1–6

    Google Scholar 

  • Kamal R (2017) Lesson 11 internet connected environment (weather, air pollution and forest fire) monitoring, pp 1–41. Available online: https://www.dauniv.ac.in/public/frontassets/coursematerial/InternetofThings/IoTCh12L11EnvironmentMonitoring.pdf

  • Keola S, Andersson M, Hall O (2015) Monitoring economic development from space: using nighttime light and land cover data to measure economic growth. World Dev. 66:322–334. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0305750X14002551

  • Kulkarni P, Kute P (2016) Internet of things based system for remote monitoring of weather parameters and applications. Int J Adv Electron Comput Sci 3(2):68–73

    Google Scholar 

  • Landsat Science (2023). https://landsat.gsfc.nasa.gov/data/where-to-get-data/

  • LeMoigne J, Dabney P, Foreman V, Grogan P, Hache S, Holland MP, Hughes SP, Nag S, Siddiqi A (2017) End-to-end trade-space analysis for designing constellation missions. In: AGU fall meeting abstracts, vol 2017 , pp IN13B–0071

    Google Scholar 

  • Liu CA, Chen ZX, Shao Y, Chen JS, Hasi T, Pan HZ (2019) Research advances of SAR remote sensing for agriculture applications: a review. J Integr Agricult 18(3):506–525. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095311918620167

  • Luca C, Sara P, Cesario Vincenzo A, Nicomino F, Ullo S, Pia A (2018) Unsupervised post-fire assessment of burned areas with free and open multispectral data using OBIA. In: GEOBIA 2018 - From pixels to ecosystems and global sustainability. [Online]. Available: www.geobia2018.com, https://hal.archives-ouvertes.fr/hal-01957184

  • Mack CA (2014) The art of wireless sensor networks, in series: signals and communication technology, vol 1. Springer, Berlin, pp XVII, 830

    Google Scholar 

  • Maciuca, D., Chow, J., Siddiqi, A., de Weck, O., Alban, S., Dewell, L., Howell, A., Lieb, J., Mottinger, B., Pandya, J. and Ramirez, J., 2009, September. A modular, high-fidelity tool to model the utility of fractionated space systems. In AIAA SPACE 2009 Conference & Exposition (p. 6765).

    Google Scholar 

  • Magliarditi E, Siddiqi A, de Weck O (2019a) Remote sensing for assessing natural capital in inclusive wealth of nations: current capabilities and gaps. In: IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium. IEEE, Yokohama, Japan, pp 4411–4414

    Google Scholar 

  • Marcuccio S, Ullo S, Carminati M, Kanoun O (2019) Smaller satellites, larger constellations: trends and design issues for earth observation systems. IEEE Aerospace Electron Syst Mag 34(10):50–59

    Article  Google Scholar 

  • Moraguez M, Trujillo A, de Weck O, Siddiqi A (2020) Convolutional neural network for detection of residential photovoltalc systems in satellite imagery. In: IGARSS 2020–2020 IEEE international geoscience and remote sensing symposium. IEEE, pp 1600–1603. Available: https://ieeexplore.ieee.org/document/9324245

  • Mukhopadhyay S, Gupta G (2008) Smart sensors and sensing technology, in series: lecture notes in electrical engineering, vol 20. Springer, Berlin, pp 27–38

    Book  Google Scholar 

  • NASA, EarthData Open Access for Open Data (2023). https://earthdata.nasa.gov/learn/backgrounders/what-is-sar

  • Outer Space Objects Index (2023) https://www.unoosa.org/oosa/osoindex/index.jspx?lf_id=

  • Paek SW, Balasubramanian S, Kim S, de Weck O (2020) Small-satellite synthetic aperture radar for continuous global biospheric monitoring: a review. Remote Sensing 12(16):2546. [Online]. Available: https://www.mdpi.com/2072-4292/12/16/2546

  • Pathak A, AmazUddin M, Abedin MJ, Andersson K, Mustafa R, Hossain MS (2019) IoT based smart system to support agricultural parameters: a case study. Procedia Comput Sci 155:648–653

    Article  Google Scholar 

  • Pavithra G (2018) Intelligent monitoring device for agricultural greenhouse using IOT. J Agricult Sci Food Res 9(2):2–5

    Google Scholar 

  • Rajendran GB, Kumarasamy UM, Zarro C, Divakarachari PB, Ullo SL (2020) Land-use and land-cover classification using a human group-based particle swarm optimization algorithm with an LSTM classifier on hybrid pre-processing remote-sensing images. Remote Sensing 12(24):4135. [Online]. Available: https://www.mdpi.com/2072-4292/12/24/4135

  • Rapuano E, Meoni G, Pacini T, Dinelli G, Furano G, Giuffrida G, Fanucci L (2021) An FPGA-based hardware accelerator for CNNs inference on board satellites: benchmarking with myriad 2-based solution for the cloudscout case study. Remote Sensing 13(8). [Online]. Available: https://www.mdpi.com/2072-4292/13/8/1518

  • Reid J, Zeng C, Wood D (2019) Combining social, environmental and design models to support the sustainable development goals. In 2019 IEEE aerospace conference, pp 1–13

    Google Scholar 

  • SciencePhotoLibrary (2023) An image from space of Sputnik 1. https://www.sciencephoto.com/media/1157162/view/sputnik-1-in-earth-orbit-illustration

  • Sebastianelli A, Mauro F, Di Cosmo G, Passarini F, Carminati M, Ullo SL (2021) Airsense-to-act: a concept paper for covid-19 countermeasures based on artificial intelligence algorithms and multi-source data processing. ISPRS Int J Geo-Inf 10(1):34. [Online]. Available: https://www.mdpi.com/2220-9964/10/1/34

  • Sebastianelli A, Zaidenberg DA, Spiller D, Saux BL, Ullo SL (2022) On circuit-based hybrid quantum neural networks for remote sensing imagery classification. IEEE J Selec Topics Appl Earth Observ Remote Sensing 15:565–580

    Article  Google Scholar 

  • Sentinel Online (2023) Sentinel-1. https://sentinel.esa.int/web/sentinel/missions/sentinel-1

  • Seradata Database (2023) https://www.seradata.com/products/spacetrak/

  • Shankar R (2020) Fundamentals of physics II: electromagnetism, optics, and quantum mechanics. Yale University Press, New Haven

    Book  Google Scholar 

  • Siddiqi A, Magliarditi E, DeWeck O (2019a) Small spacecraft earth observing missions for natural capital assessment. Available: https://iafastro.directory/iac/archive/browse/IAC-19/B4/1/54877/. In: International astronautical federation-70th international astronautical congress (2019)

  • Siddiqi A, Magliarditi E, de Week O (2019b). Valuing new earth observation missions for system architecture trade-studies. Available: https://ieeexplore.ieee.org/document/8899126. In: IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium. IEEE, Yokohama, Japan, pp 5297–5300

  • Siddiqi A, Baber S, de Weck OL, Durell C, Russell B, Holt J (2020a) Integrating globally dispersed calibration in small satellites mission value. Small Satellites Conference 2020, Utah. Available: https://digitalcommons.usu.edu/smallsat/2020/all2020/25/

  • Siddiqi A, Baber S, de Weck O, Durell C (2020b) Error and uncertainty in earth observation value chains. Available: https://ieeexplore.ieee.org/document/9323463. In: IGARSS 2020–2020 IEEE international geoscience and remote sensing symposium. IEEE, Yokohama, Japan, pp 3158–3161

  • Siddiqi A, Baber S, De Weck O (2021) Valuing radiometric quality of remote sensing data for decisions. Available: https://ieeexplore.ieee.org/document/9553916. In: 2021 IEEE international geoscience and remote sensing symposium IGARSS. IEEE, pp 5724–5727

  • Sivakannu G, Balaji S (2017) Implementation of smart farm monitoring using IoT. Int J Curr Eng Sci Res 4(6):21–27

    Google Scholar 

  • Supporting the Sustainable Development Goals (2023) https://www.unoosa.org/res/oosadoc/data/documents/2018/stspace/stspace67_0_html/SDGs_EGNSSCopernicus_eBook.pdf

  • Synspective (2021). Available Online: https://synspective.com/. Accessed 16 Feb 2021

  • Ulaby T, Moore K, Fung K (1981) Microwave remote sensing. Volume I: microwave remote sensing fundamentals and radiometry. Artech House, Norwood

    Google Scholar 

  • Ullo SL, Sinha G (2020) Advances in smart environment monitoring systems using IoT and sensors. Sensors 20(11):3113

    Article  Google Scholar 

  • Ullo SL, Sinha G (2021a) Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing 13(13):2585

    Article  Google Scholar 

  • Ullo SL, Angelino CV, Cicala L, Fiscante N, Addabbo P, Del Rosso MP, Sebastianelli A (2018a) Sar interferometry with open Sentinel-1 data for environmental measurements: the case of ischia earthquake. In: 2018 IEEE international conference on environmental engineering (EE), pp 1–8

    Google Scholar 

  • Ullo S, Angelino CV, Cicala L, Fiscante N, Addabbo P (2018b) Use of differential interferometry on Sentinel-1 images fot the measurement of ground displacements. ischia earthquake and comparison with Ingv data. In: IGARSS 2018 - 2018 IEEE international geoscience and remote sensing symposium, pp 2216–2219. [Online]. Available: https://ieeexplore.ieee.org/document/8518715/

  • Ullo S, Addabbo P, Di Martire D, Sica S, Fiscante N, Cicala L, Angelino VC (2019a) Application of dinsar technique to high coherence Sentinel-1 images for dam monitoring and result validation through in situ measurements. IEEE J Select Topics Appl Earth Observat Remote Sensing 12:875–890

    Article  Google Scholar 

  • Ullo SL, Langenkamp MS, Oikarinen TP, DelRosso MP, Sebastianelli A, Piccirillo F, Sica S (2019b) Landslide geohazard assessment with convolutional neural networks using sentinel-2 imagery data. In IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium, pp 9646–9649

    Google Scholar 

  • Ullo S, Zarro C, Wojtowicz K, Meoli G, Focareta M (2020) LiDAR-Based system and optical VHR data for building detection and mapping. Sensors 20:1285

    Article  Google Scholar 

  • Ullo SL, Mohan A, Sebastianelli A, Ahamed SE, Kumar B, Dwivedi R, Sinha GR (2021b) A new mask R-CNN-based method for improved landslide detection. IEEE J Selec Top Appl Earth Observ Remote Sensing 14:3799–3810

    Article  Google Scholar 

  • Umbra (2021). Available Online: https://umbra.space. Accessed 1 March 2021

  • UN-ARIES (2021) United Nations SEEA: artificial intelligence for ecosystem accounting. https://seea.un.org/content/aries-for-seea

  • UN-SEEA (2021) United Nations: system of environmental economic accounting. https://seea.un.org

  • United Nations Office for Outer Space Affairs (2023). https://www.unoosa.org/oosa/index.html

  • Weng Q (2009) Remote sensing and GIS integration: theories, methods, and applications: theory, methods, and applications. McGraw-Hill Education, New York

    Google Scholar 

  • Werner D (2021) SpaceNews. https://spacenews.com/spacety-releases-first-sar-images/

  • Wong MS, Wang T, Ho HC, Kwok CY, Lu K, Abbas S (2018) Towards a smart city: development and application of an improved integrated environmental monitoring system. Sustainability 10(3):623

    Article  Google Scholar 

  • Woodhouse IH (2005) Introduction to microwave remote sensing. CRC Press, Boca Raton

    Google Scholar 

  • Yang L, Siddiqi A, de Weck OL (2019) Urban roads network detection from high resolution remote sensing. In: IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium. Available: https://ieeexplore.ieee.org/document/8899328. IEEE, Yokohama, Japan, pp 7431–7434

  • Zaidenberg DA, Sebastianelli A, Spiller D, Saux BL, Ullo SL (2021) Advantages and bottlenecks of quantum machine learning for remote sensing. arXiv:2101.10657

    Google Scholar 

  • Zaidenberg DA, Sebastianelli A, Spiller D, Le Saux B, Ullo SL (2021) Advantages and bottlenecks of quantum machine learning for remote sensing. In: IEEE international geoscience and remote sensing symposium (IGARSS), 07 (2021)

    Google Scholar 

  • Ziaja M, Bosowski P, Myller M, Gajoch G, Gumiela M, Protich J, Borda K, Jayaraman D, Dividino R, Nalepa J (2021) Benchmarking deep learning for on-board space applications. Remote Sensing 13(19). [Online]. Available: https://www.mdpi.com/2072-4292/13/19/3981

Download references

Acknowledgements

The authors wish to thank Sheila Baber for assistance in compiling data for SAR constellations. Sheila participated in a joint program of MIT and University of Sannio through the MIT Science and Technology Initiative (MISTI) during her Independent Activity Period (IAP) in January 2021 jointly supervised by Afreen Siddiqi and Silvia L. Ullo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Liberata Ullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullo, S.L., Siddiqi, A. (2023). Remote Sensing Through Satellites and Sensor Networks. In: Greco, M.S., Cassioli, D., Ullo, S.L., Lyons, M.J. (eds) Women in Telecommunications. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-031-21975-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21975-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21974-0

  • Online ISBN: 978-3-031-21975-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics