Skip to main content

Recent Advances in Bayesian Inference for Complex Systems

  • Chapter
  • First Online:
Women in Telecommunications

Part of the book series: Women in Engineering and Science ((WES))

  • 174 Accesses

Abstract

In many real-world problems, the interest is in learning about unknowns from observed data. One widely adopted approach to learning is to employ Bayesian inference. Over the last half-century, Monte Carlo-based methods have kept the main stage of Bayesian reasoning, and they will not relinquish it any time soon. With these methods, Bayesianism has enjoyed tremendous success as they made possible the computation of posterior distributions of unknowns from very challenging models. In the new age of signal processing, the main problems of concern are those with large numbers of unknowns (complex systems) and/or large amounts of data (big data). This raises the concern that Bayesian inference may become computationally incapable of handling them because of the sheer size and complexity of the studied systems. This chapter discusses the main challenges related to the addressed problem and recent advances in the theory and practice of a class of Monte Carlo methods, adaptive importance sampling (AIS), for dealing exactly with the types of problems where the numbers of unknowns and/or data are large. The focus of the chapter will be on new schemes for adaptive importance sampling with emphasis on strategies for adaptive learning and for stable weight computation, model selection, and application of the theory to case-studies including reconstruction of gene regulatory (life science problem) and inference of demographic rates of penguin populations (ecological problem).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dynamic parameters are often referred to as state or hidden state and static parameters as model parameters (Adali and Haykin 2010; Liu and West 2001).

  2. 2.

    Asymptotic methods, multiple quadrature approaches, and subregion adaptive integration (Evans and Swartz 1995) are also used for approximation of integrals but cannot be applied in high-dimensional setups and only MC approaches become feasible in many practical applications.

  3. 3.

    Note that here we discuss initialization strategies for Bayesian models with only unknown static parameters for simplicity in the notation and presentation.

References

  • Adali T, Haykin S (2010) Adaptive signal processing: next generation solutions, vol 55. Wiley

    Book  Google Scholar 

  • Andrieu C, Davy M, Doucet A (2001) Improved auxiliary particle filtering: Applications to time-varying spectral analysis. In: Proceedings of the 11th IEEE signal processing workshop on statistical signal processing (Cat. No. 01TH8563). IEEE, pp 309–312

    Google Scholar 

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J Roy Stat Soc B 72(3):269–342

    Article  MathSciNet  MATH  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: Understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  • Bengtsson T, Snyder C, Nychka D (2003) Toward a nonlinear ensemble filter for high dimensional systems. J Geophys Res 108

    Google Scholar 

  • Bernardo JM, Smith AF (2001) Bayesian theory. Wiley

    Google Scholar 

  • Berzuini C, Best NG, Gilks WR, Larizza C (1997) Dynamic conditional independence models and Markov Chain Monte Carlo methods. J Am Stat Assoc 92:1403–1412

    Article  MathSciNet  MATH  Google Scholar 

  • Binford TO, Levitt TS, Mann WB (2013) Bayesian inference in model-based machine vision. Preprint.‘arXiv:13042720

    Google Scholar 

  • Bojesen TA (2018) Policy-guided Monte Carlo: Reinforcement-learning Markov chain dynamics. Phys Rev E 98(6):063303

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

    Book  MATH  Google Scholar 

  • Brooks S, Gelman A, Jones GL, Meng XL (eds) (2011) Handbook of Markov Chain Monte Carlo. CRC Press

    MATH  Google Scholar 

  • Bugallo MF, Elvira V, Martino L, Luengo D, Míguez J, Djurić PM (2017) Adaptive importance sampling: The past, the present, and the future. Signal Process Mag 34:60–79

    Article  Google Scholar 

  • Bugallo MF, Taşdemir Ç, Djurić PM (2015) Estimation of gene expression by a bank of particle filters. In: 2015 23rd European signal processing conference (EUSIPCO). IEEE, pp 494–498

    Google Scholar 

  • Bui T, Hernández-Lobato D, Hernandez-Lobato J, Li Y, Turner R (2016) Deep gaussian processes for regression using approximate expectation propagation. In: International conference on machine learning, pp 1472–1481

    Google Scholar 

  • Cappé O, Douc R, Guillin A, Marin J, Robert CP (2008a) Adaptive importance sampling in general mixture classes. Stat Comput 18(4):447–459

    Article  MathSciNet  Google Scholar 

  • Cappé O, Douc R, Guillin A, Marin JM, Robert CP (2008b) Adaptive importance sampling in general mixture classes. Stat Comput 18:447–459

    Article  MathSciNet  Google Scholar 

  • Cappé O, Guillin A, Marin J, Robert CP (2004) Population Monte Carlo. J Comput Graph Stat 13(4):907–929

    Article  MathSciNet  Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference. Duxbury, Pacific Grove, CA (USA)

    Google Scholar 

  • Chang C, Ding Z, Hung YS, Fung PCW (2008) Fast network component analysis (fastnca) for gene regulatory network reconstruction from microarray data. Bioinformatics 24(11):1349–1358

    Article  Google Scholar 

  • Chen H, Tiňo P, Yao X (2009) Predictive ensemble pruning by expectation propagation. IEEE Trans Knowl Data Eng (7):999–1013

    Article  Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press

    MATH  Google Scholar 

  • Cornuet J, Marin J, Mira A, Robert CP (2012) Adaptive multiple importance sampling. Scand J Stat 39(4):798–812

    Article  MathSciNet  MATH  Google Scholar 

  • Ding J, Tarokh V, Yang Y (2018) Model selection techniques: An overview. IEEE Signal Process Mag 35(6):16–34

    Article  Google Scholar 

  • Djurić PM, Lu T, Bugallo MF (2007) Multiple particle filtering. In: 2007 IEEE international conference on acoustics, speech and signal processing-ICASSP’07, vol 3. IEEE, pp III–1181

    Google Scholar 

  • Doucet A, Johansen AM (2009) A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of nonlinear filtering, vol 12(656-704), p 3

    Google Scholar 

  • El-Laham Y, Djurić PM, Bugallo MF (2019) A variational adaptive population importance sampler. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 5052–5056

    Google Scholar 

  • El-Laham Y, Elvira V, Bugallo MF (2018) Robust covariance adaptation in adaptive importance sampling. IEEE Signal Process Lett 25

    Google Scholar 

  • El-Laham Y, Yang L, Lynch HJ, Djurić PM, Bugallo MF (2021) Particle Gibbs sampling for regime-switching state-space models. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

    Google Scholar 

  • Evans M, Swartz T (1995) Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Stat Sci, 254–272

    Google Scholar 

  • Fearnhead P (2008) Computational methods for complex stochastic systems: A review of some alternatives to MCMC. Stat Comput 18(2):151–171

    Article  MathSciNet  Google Scholar 

  • Gilks WR, Berzuini C (2001) Following a moving target - Monte Carlo inference for dynamic Bayesian model. J Roy Stat Soc B 63:127–146

    Article  MathSciNet  MATH  Google Scholar 

  • Godsill SJ, Rayner PJW (1998) Digital audio restoration, 1st edn. Springer, London (UK)

    Book  MATH  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE proceedings F (radar and signal processing), vol 140, pp 107–113

    Google Scholar 

  • Graves A (2016) Stochastic backpropagation through mixture density distributions. Preprint. arXiv:160705690

    Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 4:711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Haykin SS (1994) Blind deconvolution. Prentice Hall, Englewood Cliffs, NJ (USA)

    Google Scholar 

  • Heng J, Bishop AN, Deligiannidis G, Doucet A (2017) Controlled sequential Monte Carlo. Preprint. arXiv:170808396

    Google Scholar 

  • Hinne M, Heskes T, Beckmann CF, van Gerven MAJ (2013) Bayesian inference of structural brain networks. NeuroImage 66:543–552

    Article  Google Scholar 

  • Hong M, Bugallo MF, Djurić PM (2010) Joint model selection and parameter estimation by population Monte Carlo simulation. IEEE J Sel Top Signal Process 4:526–539

    Article  Google Scholar 

  • Hutt R (2016) What are the 10 biggest global challenges? In: World economic forum annual meeting. https://www.weforum.org/agenda/2016/01/what-are-the-10-biggest-global-challenges/

  • Iloska M, El-Laham Y, Bugallo MF (2020) A particle Gibbs sampling approach to topology inference in gene regulatory networks. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

    Google Scholar 

  • Jenkins CR, Peacock JA (2011) The power of Bayesian evidence in astronomy. Mon Not Roy Astron Soc 413:2895–2905

    Article  Google Scholar 

  • Jordan M, Kleinberg J (2006) Information science and statistics, vol 4

    Google Scholar 

  • Karlsson R (2005) Particle filtering for positioning and tracking applications. PhD thesis, Linköping University Electronic Press

    Google Scholar 

  • Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall, Upper Saddle River, NJ (USA)

    Google Scholar 

  • Kilbinger M, Wraith D, Robert CP, Benabed K, Cappé O, Cardoso JF, Fort G, Prunet S, Bouchet FR (2010) Bayesian model comparison in cosmology with population Monte Carlo. Mon Not Roy Astron Soc 405:2381–2390

    Google Scholar 

  • Li T, Bolic M, Djuric PM (2015) Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process Mag 32(3):70–86

    Article  Google Scholar 

  • Liu J, West M (2001) Combined parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo methods in practice. Springer, pp 197–223

    Google Scholar 

  • Lopes HF, Tsay RS (2011) Particle filters and Bayesian inference in financial econometrics. J Forecast 30:168–209

    Article  MathSciNet  MATH  Google Scholar 

  • Marin JM, Robert CP (2010) A practical approach to computational Bayesian statistics. Springer

    Google Scholar 

  • Martino L, Elvira V, Luengo D, Corander J (2015) An adaptive population importance sampler: Learning from uncertainty. IEEE Trans Signal Process 63(16):4422–4437

    Article  MathSciNet  MATH  Google Scholar 

  • Martino L, Elvira V, Luengo D, Corander J (2017) Layered adaptive importance sampling. Stat Comput 27(3):599–623

    Article  MathSciNet  MATH  Google Scholar 

  • Minka TP (2001) Expectation propagation for approximate Bayesian inference. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp 362–369

    Google Scholar 

  • Minsker S, Srivastava S, Lin L, Dunson D (2014) Scalable and robust Bayesian inference via the median posterior. In: International conference on machine learning, pp 1656–1664

    Google Scholar 

  • Morita S, Thall PF, Müller P (2008) Determining the effective sample size of a parametric prior. Biometrics 64(2):595–602

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy KP (2012) Machine learning: A probabilistic perspective. The MIT Press

    MATH  Google Scholar 

  • Naesseth CA, Linderman SW, Ranganath R, Blei DM (2017) Variational sequential Monte Carlo. Preprint. arXiv:170511140

    Google Scholar 

  • Neiswanger C Wand Wang, Xing E (2013) Asymptotically exact, embarrassingly parallel MCMC. Preprint. arXiv:13114780

    Google Scholar 

  • Orchard ME, Vachtsevanos GJ (2007) A particle filtering-based framework for real-time fault diagnosis and failure prognosis in a turbine engine. In: 2007 mediterranean conference on control & automation. IEEE, pp 1–6

    Google Scholar 

  • Ortega A, Frossard P, Kovačević J, Moura JMF, Vandergheynst P (2018) Graph signal processing: Overview, challenges, and applications. Proc IEEE 106(5):808–828

    Article  Google Scholar 

  • Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing, Vienna, Austria, vol 124, p 10

    Google Scholar 

  • Portier F, Delyon B (2018) Asymptotic optimality of adaptive importance sampling. In: Advances in neural information processing systems, pp 3134–3144

    Google Scholar 

  • Putman RJ (1995) Ethical considerations and animal welfare in ecological field studies. Biodivers Conserv 4(8):903–915

    Article  Google Scholar 

  • Rabin J, Peyré G, Delon J, Bernot M (2011) Wasserstein barycenter and its application to texture mixing. In: International conference on scale space and variational methods in computer vision. Springer, pp 435–446

    Google Scholar 

  • Ryu EK (2016) Convex optimization for monte carlo: Stochastic optimization for importance sampling. PhD thesis, Stanford University

    Google Scholar 

  • Ryu EK, Boyd SP (2014) Adaptive importance sampling via stochastic convex programming. Preprint. arXiv:14124845

    Google Scholar 

  • Scharf LL (1991) Statistical signal processing. Addison-Wesley, Reading, MA (USA)

    MATH  Google Scholar 

  • Srivastava S, Cevher V, Dinh Q, Dunson D (2015) WASP: Scalable Bayes via barycenters of subset posteriors. In: Artificial intelligence and statistics, pp 912–920

    Google Scholar 

  • Taşdemir Ç, Bugallo MF, Djurić PM (2017) A particle-based approach for topology estimation of gene networks. In: 2017 IEEE 7th International workshop on computational advances in multi-sensor adaptive processing (CAMSAP). IEEE, pp 1–5

    Google Scholar 

  • Van Trees HL (2004) Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory. Wiley

    MATH  Google Scholar 

  • von Toussaint U (2011) Bayesian inference in physics. Rev Mod Phys 83:943–999

    Article  Google Scholar 

  • Wang X, Dunson DB (2013) Parallel MCMC via Weierstrass sampler, vol 24. Preprint. arXiv:13124605

    Google Scholar 

  • Wang X, Li T, Sun S, Corchado J (2017) A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 17(12):2707

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica F. Bugallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bugallo, M.F. (2023). Recent Advances in Bayesian Inference for Complex Systems. In: Greco, M.S., Cassioli, D., Ullo, S.L., Lyons, M.J. (eds) Women in Telecommunications. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-031-21975-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21975-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21974-0

  • Online ISBN: 978-3-031-21975-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics