Skip to main content

In Dimension “Zero”

  • Chapter
  • First Online:
Homogenization Theory for Multiscale Problems

Part of the book series: MS&A ((MS&A,volume 21))

  • 344 Accesses

Abstract

We will really start studying homogenization theory in Chap. 2. For now, we only propose an informal introduction to the problem. How can we expect the solutions of (1) to behave in the limit ε → 0 ? What information can we obtain “for free”? What additional price should we pay to answer to more difficult questions? We will see that, specifically, two ingredients show up: weak convergence of sequences of functions, and the (related) notion of mean value of a function. The material we collect in the present chapter will be used throughout this textbook. It will prove useful in (at least) two ways: both in getting an intuition about more elaborate problems and in building mathematical proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luigi Ambrosio and Hermano Frid. Multiscale Young measures in almost periodic homogenization and applications. Arch. Ration. Mech. Anal., 192(1):37–85, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, and Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete Contin. Dyn. Syst., 13(2):503–514, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  3. Maria E. Becker. Multiparameter groups of measure-preserving transformations: a simple proof of Wiener’s ergodic theorem. Ann. Probab., 9:504–509, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  4. Abram S. Besicovitch. Almost periodic functions. Cambridge: Univ. Press. XIII, 180 p, 1932.

    Google Scholar 

  5. Patrick Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, third edition, 1995.

    Google Scholar 

  6. Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions. A definition of the ground state energy for systems composed of infinitely many particles. Commun. Partial Differ. Equations, 28(1–2):439–475, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  7. Harald Bohr. Almost periodic functions. Reprint of the 1947 English edition published by Chelsea Publishing Company. Mineola, NY: Dover Publications, 2018.

    Google Scholar 

  8. Edward B. Burger and Robert Tubbs. Making transcendence transparent. An intuitive approach to classical transcendental number theory. Springer-Verlag, New York, 2004.

    Google Scholar 

  9. Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions. The mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford: Clarendon Press, 1998.

    MATH  Google Scholar 

  10. Nelson Dunford and Jacob T. Schwartz. Linear operators. Part I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988.

    Google Scholar 

  11. Nelson Dunford and Jacob T. Schwartz. Linear operators. Part II. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988.

    Google Scholar 

  12. Richard M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  13. Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019.

    Google Scholar 

  14. Gerald B. Folland. A course in abstract harmonic analysis. Boca Raton, FL: CRC Press, 1995.

    MATH  Google Scholar 

  15. Sergei M. Kozlov. Averaging differential operators with almost periodic, rapidly oscillating coefficients. Math. USSR, Sb., 35:481–498, 1979.

    Article  MATH  Google Scholar 

  16. Ulrich Krengel. Ergodic theorems., volume 6. Walter de Gruyter, Berlin, 1985.

    Book  MATH  Google Scholar 

  17. Melvyn B. Nathanson. Additive number theory, volume 164 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996. The classical bases.

    Google Scholar 

  18. Alexander Pankov. Almost periodic functions, Bohr compactification, and differential equations. Rend. Sem. Mat. Fis. Milano, 66:149–158 (1998), 1996.

    MathSciNet  MATH  Google Scholar 

  19. Albert N. Shiryaev. Probability. 2nd ed., volume 95. New York, NY: Springer-Verlag, 1995.

    Google Scholar 

  20. Antoni Zygmund. Trigonometric series. Volumes I and II combined. 3rd ed. Cambridge: Cambridge University Press, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanc, X., Le Bris, C. (2023). In Dimension “Zero”. In: Homogenization Theory for Multiscale Problems. MS&A, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-031-21833-0_1

Download citation

Publish with us

Policies and ethics