Skip to main content

Artificial Intelligence in Manufacturing Processes

  • Chapter
  • First Online:
A Perspective on Artificial Intelligence in Manufacturing

Abstract

A manufacturing process is defined as the use of one or more physical mechanisms to transform the shape and/or form and/or properties of a material. This chapter discusses AI topics, related to manufacturing processes. Initially, there is a short introduction to the main categories of manufacturing processes, namely, forming, deforming, removing, joining and material properties modification processes. Then, the chapter discusses the role of AI in supporting key activities, at process level, including (i) process monitoring and data processing, (ii) process modeling, optimization and control, (iii) fault diagnosis, tool wear prediction and remaining useful life estimation and (iv) process quality assessment and prediction. For each topic, the scope and the theoretical background are initially provided and then selected cases of AI applications are discussed. At the end of this chapter, both the impact and the limitations of AI at manufacturing process level are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer (2006)

    Google Scholar 

  2. Swift, K.G., Booker, J.D.: Manufacturing Process Selection Handbook. Butterworth-Heinemann (2013)

    Google Scholar 

  3. Kalpakjian, S., Schmid, S.R.: Manufacturing Engineering & Technology. Pearson (2006)

    Google Scholar 

  4. Saleh, J.H., Mark, G., Jordan, N.C.: Flexibility: a multi-disciplinary literature review and a research agenda for designing flexible engineering systems. J. Eng. Des. 20, 307–323 (2009). https://doi.org/10.1080/09544820701870813

    Article  Google Scholar 

  5. Beach, R., Muhlemann, A.P., Price, D.H., Paterson, A., Sharp, J.A.: Manufacturing operations and strategic flexibility: survey and cases. Int. J. Oper. Prod. Manag. (2000)

    Google Scholar 

  6. Maldonado, A., García, J.L., Alvarado, A., Balderrama, C.O.: A hierarchical fuzzy axiomatic design methodology for ergonomic compatibility evaluation of advanced manufacturing technology. Int. J. Adv. Manuf. Technol. 66, 171–186 (2013). https://doi.org/10.1007/s00170-012-4316-8

    Article  Google Scholar 

  7. Bikas, H., Stavropoulos, P., Chryssolouris, G.: Additive manufacturing methods and modelling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83(1), 389–405 (2015). https://doi.org/10.1007/S00170-015-7576-2

  8. Yogeshkumar, K.S., Ramesh Babu, K.: An advanced method of jigs and fixtures planning by using cad methods. In: IET Conference Publications (2013). https://doi.org/10.1049/CP.2013.2565

  9. Makris, S.: Cooperating Robots for Flexible Manufacturing (2021)

    Google Scholar 

  10. Chryssolouris, G., Domroese, M., Beaulieu, P.: Sensor synthesis for control of manufacturing processes. J. Manuf. Sci. Eng. Trans. ASME 114, 158–174 (1992). https://doi.org/10.1115/1.2899768

    Article  Google Scholar 

  11. Chryssolouris, G., Domroese, M.: An experimental study of strategies for integrating sensor information in machining. CIRP Ann. Manuf. Technol. 38, 425–428 (1989). https://doi.org/10.1016/S0007-8506(07)62738-3

    Article  Google Scholar 

  12. Chryssolouris, G.: Sensors in laser machining. CIRP Ann. Manuf. Technol. 43, 513–519 (1994). https://doi.org/10.1016/S0007-8506(07)60497-1

    Article  Google Scholar 

  13. Aivaliotis, P., Georgoulias, K., Arkouli, Z., Makris, S.: Methodology for enabling Digital Twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP 81, 417–422 (2019). https://doi.org/10.1016/j.procir.2019.03.072

    Article  Google Scholar 

  14. Batchelor, B.G.: Machine Vision Handbook, pp. 1–2272 (2012). https://doi.org/10.1007/978-1-84996-169-1/COVER

  15. Grasso, M., Colosimo, B.M., Semeraro, Q., Pacella, M.: A comparison study of distribution-free multivariate spc methods for multimode data. Qual. Reliab. Eng. Int. 31, 75–96 (2015). https://doi.org/10.1002/QRE.1708

    Article  Google Scholar 

  16. Yang, W.A., Zhou, W.: Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated manufacturing processes using neural network ensemble. J. Intell. Manuf. 26, 1161–1180 (2015). https://doi.org/10.1007/s10845-013-0847-6

    Article  Google Scholar 

  17. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006). https://doi.org/10.1016/j.ymssp.2005.09.012

    Article  Google Scholar 

  18. Yang, H., Mathew, J., Ma, L.: Fault diagnosis of rolling element bearings using basis pursuit. Mech. Syst. Signal Process. 19, 341–356 (2005). https://doi.org/10.1016/J.YMSSP.2004.03.008

    Article  Google Scholar 

  19. Wang, D.: K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited. Mech. Syst. Signal Process. 70–71, 201–208 (2016). https://doi.org/10.1016/J.YMSSP.2015.10.007

    Article  Google Scholar 

  20. Maurya, A.: Bayesian optimization for predicting rare internal failures in manufacturing processes. In: Proceedings—2016 IEEE International Conference on Big Data, Big Data 2016, pp. 2036–2045. Institute of Electrical and Electronics Engineers Inc. (2016)

    Google Scholar 

  21. Delli, U., Chang, S.: Automated process monitoring in 3d printing using supervised machine learning. Procedia Manuf. 26, 865–870 (2018). https://doi.org/10.1016/j.promfg.2018.07.111

    Article  Google Scholar 

  22. Khorasani, A.M., Yazdi, M.R.S.: Development of a dynamic surface roughness monitoring system based on artificial neural networks (ANN) in milling operation. Int. J. Adv. Manuf. Technol. 93(1), 141–151 (2015). https://doi.org/10.1007/S00170-015-7922-4

  23. Lei, Y., Jia, F., Lin, J., Xing, S., Ding, S.X.: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Ind. Electron. 63, 3137–3147 (2016). https://doi.org/10.1109/TIE.2016.2519325

    Article  Google Scholar 

  24. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. 33, 429–439 (2020). https://doi.org/10.1080/0951192X.2020.1747642

  25. Liu, R., Yang, B., Zio, E., Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016

    Article  Google Scholar 

  26. Safizadeh, M.S., Latifi, S.K.: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf. Fusion 18, 1–8 (2014). https://doi.org/10.1016/J.INFFUS.2013.10.002

    Article  Google Scholar 

  27. Huang, Z., Zhu, J., Lei, J., Li, X., Tian, F.: Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. J. Intell. Manuf. 31, 953–966 (2020). https://doi.org/10.1007/s10845-019-01488-7

    Article  Google Scholar 

  28. Elbhbah, K., Sinha, J.K.: Vibration-based condition monitoring of rotating machines using a machine composite spectrum. J. Sound Vib. 332, 2831–2845 (2013). https://doi.org/10.1016/J.JSV.2012.12.024

    Article  Google Scholar 

  29. Segreto, T., Teti, R.: Machine learning for in-process end-point detection in robot-assisted polishing using multiple sensor monitoring. Int. J. Adv. Manuf. Technol. 103, 4173–4187 (2019). https://doi.org/10.1007/s00170-019-03851-7

    Article  Google Scholar 

  30. Liu, C., Li, Y., Zhou, G., Shen, W.: A sensor fusion and support vector machine based approach for recognition of complex machining conditions. J. Intell. Manuf. 29, 1739–1752 (2018). https://doi.org/10.1007/s10845-016-1209-y

    Article  Google Scholar 

  31. Zhang, B., Shin, Y.C.: A multimodal intelligent monitoring system for turning processes. J. Manuf. Process. 35, 547–558 (2018). https://doi.org/10.1016/j.jmapro.2018.08.021

    Article  Google Scholar 

  32. Grasso, M., Gallina, F., Colosimo, B.M.: Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing. Procedia CIRP 75, 103–107 (2018). https://doi.org/10.1016/J.PROCIR.2018.04.045

    Article  Google Scholar 

  33. Wuest, T., Irgens, C., Thoben, K.D.: An approach to monitoring quality in manufacturing using supervised machine learning on product state data. In: Journal of Intelligent Manufacturing, pp. 1167–1180. Kluwer Academic Publishers (2014)

    Google Scholar 

  34. Beyca, O.F., Rao, P.K., Kong, Z., Bukkapatnam, S.T.S., Komanduri, R.: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory. IEEE Trans. Autom. Sci. Eng. 13, 1033–1044 (2016). https://doi.org/10.1109/TASE.2015.2447454

    Article  Google Scholar 

  35. Rao, P.K., Liu, J., Roberson, D., Kong, Z., Williams, C.: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J. Manuf. Sci. Eng. Trans. ASME 137 (2015). https://doi.org/10.1115/1.4029823

  36. Aivaliotis, P., Arkouli, Z., Georgoulias, K., Makris, S.: Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots. Robot Comput. Integr. Manuf. 71, 102177 (2021). https://doi.org/10.1016/j.rcim.2021.102177

    Article  Google Scholar 

  37. Mellal, M.A., Williams, E.J.: Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic. J. Intell. Manuf. 27, 927–942 (2016). https://doi.org/10.1007/s10845-014-0925-4

    Article  Google Scholar 

  38. Tamang, S.K., Chandrasekaran, M.: Integrated optimization methodology for intelligent machining of inconel 825 and its shop-floor application. J. Braz. Soc. Mech. Sci. Eng. 39, 865–877 (2017). https://doi.org/10.1007/s40430-016-0570-2

    Article  Google Scholar 

  39. Rao, R.V., Rai, D.P., Balic, J.: A multi-objective algorithm for optimization of modern machining processes. Eng. Appl. Artif. Intell. 61, 103–125 (2017). https://doi.org/10.1016/j.engappai.2017.03.001

    Article  Google Scholar 

  40. Sadati, N., Chinnam, R.B., Nezhad, M.Z.: Observational data-driven modeling and optimization of manufacturing processes. Expert Syst. Appl. 93, 456–464 (2018). https://doi.org/10.1016/j.eswa.2017.10.028

    Article  Google Scholar 

  41. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital Twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine. 51, 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  42. Arkouli, Z., Aivaliotis, P., Makris, S.: Towards accurate robot modelling of flexible robotic manipulators. In: Procedia CIRP, pp. 497–501. Elsevier B.V. (2020)

    Google Scholar 

  43. Liang, Y.C., Li, W.D., Lu, X., Wang, S.: Fog computing and convolutional neural network enabled prognosis for machining process optimization. J. Manuf. Syst. 52, 32–42 (2019). https://doi.org/10.1016/j.jmsy.2019.05.003

    Article  Google Scholar 

  44. Rubaiee, S., Yildirim, M.B.: An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Comput. Ind. Eng. 127, 240–252 (2019). https://doi.org/10.1016/j.cie.2018.12.020

    Article  Google Scholar 

  45. Salonitis, K., Tsoukantas, G., Stavropoulos, P., Stournaras, A., Chondros, T., Chryssolouris, G.: Process forces modeling in Grind-Hardening. In: Proceedings of the 9th CIRP International Workshop on Modeling of Machining Operations, pp. 295–302 (2006)

    Google Scholar 

  46. Stournaras, A., Salonitis, K., Stavropoulos, P., Chryssolouris, G.: Finite element thermal analysis of pulsed laser drilling process. In: Proceedings of the 10th CIRP International Workshop on Modeling of Machining Operations, pp. 549–553 (2007)

    Google Scholar 

  47. Salonitis, K., Stavropoulos, P., Stournaras, A. Chryssolouris, G.: Thermal modelling of the laser cladding process. In: Proceedings of the 5th LANE, pp. 825–835 (2007)

    Google Scholar 

  48. Pastras, G., Fysikopoulos, A., Chryssolouris, G.: A numerical approach to the energy efficiency of laser welding. Int. J. Adv. Manuf. Technol. 92(1), 1243–1253 (2017). https://doi.org/10.1007/S00170-017-0187-3

  49. Stavropoulos, P., Bikas, H., Bekiaris, T.: Combining process and machine modelling: a cold spray additive manufacturing case. Procedia CIRP 95, 1015–1020 (2020). https://doi.org/10.1016/J.PROCIR.2021.01.178

    Article  Google Scholar 

  50. Papacharalampopoulos, A., Stavropoulos, P., Doukas, C., Foteinopoulos, P., Chryssolouris, G.: Acoustic emission signal through turning tools: a computational study. Procedia CIRP 8, 426–431 (2013). https://doi.org/10.1016/J.PROCIR.2013.06.128

    Article  Google Scholar 

  51. Foteinopoulos, P., Papacharalampopoulos, A., Stavropoulos, P.: On thermal modeling of additive manufacturing processes. CIRP J. Manuf. Sci. Technol. 20, 66–83 (2018). https://doi.org/10.1016/J.CIRPJ.2017.09.007

    Article  Google Scholar 

  52. Tsirbas, K., Mourtzis, D., Zannis, S., Chryssolouris, G.: Grind-hardening modeling with the use of neural networks. In: AMST’99, pp. 197–206. Springer Vienna (1999)

    Google Scholar 

  53. Papacharalampopoulos, A.: Investigating data-driven systems as digital twins: numerical behavior of Ho–Kalman method for order estimation. Processes 8, 431 (2020). https://doi.org/10.3390/PR8040431

  54. Vilanova, R., Visioli, A.: PID control in the third millennium. Presented at (2012)

    Google Scholar 

  55. Moreira, L.C., Li, W.D., Lu, X., Fitzpatrick, M.E.: Supervision controller for real-time surface quality assurance in CNC machining using artificial intelligence. Comput. Ind. Eng. 127, 158–168 (2019). https://doi.org/10.1016/j.cie.2018.12.016

    Article  Google Scholar 

  56. Stavropoulos, P., Chantzis, D., Doukas, C., Papacharalampopoulos, A., Chryssolouris, G.: Monitoring and control of manufacturing processes: a review. In: Procedia CIRP, pp. 421–425. Elsevier B.V. (2013)

    Google Scholar 

  57. Anavatti, S.G., Santoso, F., Garratt, M.A.: Progress in adaptive control systems: past, present, and future. Presented at the August 11 (2016)

    Google Scholar 

  58. Chryssolouris, G., Domroese, M., Zsoldos, L.: A decision-making strategy for machining control. CIRP Ann. Manuf. Technol. 39, 501–504 (1990). https://doi.org/10.1016/S0007-8506(07)61106-8

    Article  Google Scholar 

  59. Rojek, G., Kusiak, J.: Industrial control system based on data processing. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 7268, pp. 502–510 (2012). https://doi.org/10.1007/978-3-642-29350-4_60/COVER

  60. Stefanovic, M., Safonov, M.G.: Safe adaptive switching control: stability and convergence. IEEE Trans. Autom. Control 53, 2012–2021 (2008). https://doi.org/10.1109/TAC.2008.929395

    Article  MathSciNet  MATH  Google Scholar 

  61. Papacharalampopoulos, A., Stavropoulos, P., Stavridis, J.: Adaptive control of thermal processes: laser welding and additive manufacturing paradigms. Procedia CIRP 67, 233–237 (2018). https://doi.org/10.1016/J.PROCIR.2017.12.205

    Article  Google Scholar 

  62. Schütze, A., Helwig, N., Schneider, T.: Sensors 4.0—smart sensors and measurement technology enable Industry 4.0. J. Sens. Sens. Syst. 7, 359–371 (2018). https://doi.org/10.5194/jsss-7-359-2018

  63. Liu, Y., Zuo, L., Wang, C.: Intelligent adaptive control in milling processes. 12, 453–460 (2010). https://doi.org/10.1080/095119299130182

  64. Dornheim, J., Link, N.: Multiobjective reinforcement learning for reconfigurable adaptive optimal control of manufacturing processes. In: 2018 13th International Symposium on Electronics and Telecommunications, ISETC 2018—Conference Proceedings. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  65. Stavropoulos, P., Papacharalampopoulos, A., Athanasopoulou, L.: A molecular dynamics based digital twin for ultrafast laser material removal processes. Int. J. Adv. Manuf. Technol. 108, 413–426 (2020). https://doi.org/10.1007/S00170-020-05387-7/FIGURES/14

    Article  Google Scholar 

  66. García-Díaz, A., Panadeiro, V., Lodeiro, B., Rodríguez-Araújo, J., Stavridis, J., Papacharalampopoulos, A., Stavropoulos, P.: OpenLMD, an open source middleware and toolkit for laser-based additive manufacturing of large metal parts. Robot Comput. Integr. Manuf. 53, 153–161 (2018). https://doi.org/10.1016/J.RCIM.2018.04.006

    Article  Google Scholar 

  67. Papacharalampopoulos, A., Stavridis, J., Stavropoulos, P.: Sensors performance in laser-based manufacturing process quality assessment: a conceptual framework. In: Procedia CIRP, pp. 490–494. Elsevier B.V. (2019)

    Google Scholar 

  68. Stavropoulos, P., Papacharalampopoulos, A., Michail, C.K., Chryssolouris, G.: Robust additive manufacturing performance through a control oriented digital twin. Metals 11, 708 (2021). https://doi.org/10.3390/MET11050708

  69. Tao, F., Zhang, M., Liu, Y., Nee, A.Y.C.: Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 67, 169–172 (2018). https://doi.org/10.1016/j.cirp.2018.04.055

    Article  Google Scholar 

  70. Li, Y., Liu, C., Gao, J.X., Shen, W.: An integrated feature-based dynamic control system for on-line machining, inspection and monitoring. Integr. Comput. Aided Eng. 22, 187–200 (2015). https://doi.org/10.3233/ICA-150483

    Article  Google Scholar 

  71. Mourtzis, D., Togias, T., Angelopoulos, J., Stavropoulos, P.: A Digital Twin architecture for monitoring and optimization of fused deposition modeling processes. Procedia CIRP 103, 97–102 (2021). https://doi.org/10.1016/J.PROCIR.2021.10.015

    Article  Google Scholar 

  72. Stavropoulos, P., Papacharalampopoulos, A., Siatras, V., Mourtzis, D.: An AR based Digital Twin for laser based manufacturing process monitoring. Procedia CIRP 102, 258–263 (2021). https://doi.org/10.1016/J.PROCIR.2021.09.044

    Article  Google Scholar 

  73. Zhu, Q., Ba̧sar, T.: A dynamic game-theoretic approach to resilient control system design for cascading failures. In: HiCoNS’12—Proceedings of the 1st ACM International Conference on High Confidence Networked Systems, pp. 41–46. ACM Press, New York, New York, USA (2012)

    Google Scholar 

  74. Stavropoulos, P., Salonitis, A., Stournaras, A., Pandremenos, J., Paralikas, J., Chryssolouris, G.: Tool condition monitoring in micro-milling—a critical review. In: Proceedings of the 5th International Conference on Manufacturing Research (2007)

    Google Scholar 

  75. Stavropoulos, P., Salonitis, K., Stournaras, A. Pandremenos, J., Paralikas, J., Chryssolouris, G.: Advances and challenges for tool condition monitoring in micro-milling. In: Proceedings of the IFAC Workshop on Manufacturing Modelling (2007)

    Google Scholar 

  76. Stavropoulos, P., Papacharalampopoulos, A., Souflas, T.: Indirect online tool wear monitoring and model-based identification of process-related signal. 12, 1–12 (2014). https://doi.org/10.1177/1687814020919209

  77. Stavropoulos, P., Papacharalampopoulos, A., Vasiliadis, E., Chryssolouris, G.: Tool wear predictability estimation in milling based on multi-sensorial data. Int. J. Adv. Manuf. Technol. 82(1), 509–521 (2015). https://doi.org/10.1007/S00170-015-7317-6

  78. Doukas, C., Stavropoulos, P., Papacharalampopoulos, A., Foteinopoulos, P., Vasiliadis, E., Chryssolouris, G.: On the estimation of tool-wear for milling operations based on multisensorial data. In: Procedia CIRP, pp 415–420. Elsevier B.V. (2013)

    Google Scholar 

  79. Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.C., El Mansori, M., Kurfess, T.: Tool life predictions in milling using spindle power with the neural network technique. J. Manuf. Process. 22, 161–168 (2016). https://doi.org/10.1016/j.jmapro.2016.03.010

    Article  Google Scholar 

  80. Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. Tran. ASME. 139 (2017). https://doi.org/10.1115/1.4036350

  81. Corne, R., Nath, C., Mansori, M.E., Kurfess, T.: Enhancing spindle power data application with neural network for real-time tool wear/breakage prediction during Inconel drilling. Procedia Manuf. 5, 1–14 (2016). https://doi.org/10.1016/j.promfg.2016.08.004

    Article  Google Scholar 

  82. Siegel, J.E., Pratt, S., Sun, Y., Sarma, S.E.: Real-time deep neural networks for internet-enabled arc-fault detection. Eng. Appl. Artif. Intell. 74, 35–42 (2018). https://doi.org/10.1016/J.ENGAPPAI.2018.05.009

    Article  Google Scholar 

  83. Anagiannis, I., Nikolakis, N., Alexopoulos, K.: Energy-based prognosis of the remaining useful life of the coating segments in hot rolling mill. Appl. Sci. 10, 6827 (2020). https://doi.org/10.3390/APP10196827

  84. Serin, G., Sener, B., Ozbayoglu, A.M., Unver, H.O.: Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 109, 953–974 (2020). https://doi.org/10.1007/S00170-020-05449-W/FIGURES/28

    Article  Google Scholar 

  85. Ren, L., Sun, Y., Cui, J., Zhang, L.: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J. Manuf. Syst. 48, 71–77 (2018). https://doi.org/10.1016/j.jmsy.2018.04.008

    Article  Google Scholar 

  86. Taguchi, G.: Introduction to Quality Engineering: Designing Quality into Products and Processes (1986). https://doi.org/10.2307/1268824

  87. Powell, D., Magnanini, M.C., Colledani, M., Myklebust, O.: Advancing zero defect manufacturing: a state-of-the-art perspective and future research directions (2022)

    Google Scholar 

  88. Psarommatis, F., May, G., Dreyfus, P.A., Kiritsis, D.: Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research (2020)

    Google Scholar 

  89. Aguiar, P.R., Da Silva, R.B., Gerônimo, T.M., Franchin, M.N., Bianchi, E.C.: Estimating high precision hole diameters of aerospace alloys using artificial intelligence systems: a comparative analysis of different techniques. J. Braz. Soc. Mech. Sci. Eng. 39, 127–153 (2017). https://doi.org/10.1007/s40430-016-0525-7

    Article  Google Scholar 

  90. Karagiannis, S., Stavropoulos, P., Ziogas, C., Kechagias, J.: Prediction of surface roughness magnitude in computer numerical controlled end milling processes using neural networks, by considering a set of influence parameters: an aluminium alloy 5083 case study. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 228, 233–244 (2014). https://doi.org/10.1177/0954405413498582

    Article  Google Scholar 

  91. Devarasiddappa, D., George, J., Chandrasekaran, M., Teyi, N.: Application of artificial intelligence approach in modeling surface quality of aerospace alloys in WEDM process. Procedia Technol. 25, 1199–1208 (2016). https://doi.org/10.1016/j.protcy.2016.08.239

    Article  Google Scholar 

  92. Segreto, T., Karam, S., Teti, R.: Signal processing and pattern recognition for surface roughness assessment in multiple sensor monitoring of robot-assisted polishing. Int. J. Adv. Manuf. Technol. 90, 1023–1033 (2017). https://doi.org/10.1007/s00170-016-9463-x

    Article  Google Scholar 

  93. Nacereddine, N., Goumeidane, A.B., Ziou, D.: Unsupervised weld defect classification in radiographic images using multivariate generalized Gaussian mixture model with exact computation of mean and shape parameters. Comput. Ind. 108, 132–149 (2019). https://doi.org/10.1016/J.COMPIND.2019.02.010

    Article  Google Scholar 

  94. Mu, W., Gao, J., Jiang, H., Wang, Z., Chen, F., Dang, C.: Automatic classification approach to weld defects based on PCA and SVM. Insight: Non-Destruct. Test. Cond. Monit. 55, 535–539 (2013). https://doi.org/10.1784/INSI.2012.55.10.535

  95. Stavridis, J., Papacharalampopoulos, A., Stavropoulos, P.: A cognitive approach for quality assessment in laser welding. In: Procedia CIRP, pp. 1542–1547. Elsevier B.V. (2018)

    Google Scholar 

  96. Colosimo, B.M., Grasso, M.: Spatially weighted PCA for monitoring video image data with application to additive manufacturing. 50, 391–417 (2018). https://doi.org/10.1080/00224065.2018.1507563

  97. Bugatti, M., Colosimo, B.M.: Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis. J. Intell. Manuf. 33, 293–309 (2022). https://doi.org/10.1007/S10845-021-01787-Y/TABLES/5

    Article  Google Scholar 

  98. Ren, R., Hung, T., Tan, K.C.: A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 48, 929–940 (2018). https://doi.org/10.1109/TCYB.2017.2668395

    Article  Google Scholar 

  99. Park, J.K., Kwon, B.K., Park, J.H., Kang, D.J.: Machine learning-based imaging system for surface defect inspection. Int. J. Precis. Eng. Manuf. Green Technol. 3(3), 303–310 (2016). https://doi.org/10.1007/S40684-016-0039-X

  100. Manohar, K., Hogan, T., Buttrick, J., Banerjee, A.G., Kutz, J.N., Brunton, S.L.: Predicting shim gaps in aircraft assembly with machine learning and sparse sensing. J. Manuf. Syst. 48, 87–95 (2018). https://doi.org/10.1016/J.JMSY.2018.01.011

    Article  Google Scholar 

  101. Jiang, P., Jia, F., Wang, Y., Zheng, M.: Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. J. Intell. Manuf. 25, 521–538 (2014). https://doi.org/10.1007/s10845-012-0703-0

    Article  Google Scholar 

  102. Purtonen, T., Kalliosaari, A., Salminen, A.: Monitoring and adaptive control of laser processes. In: Physics Procedia, pp. 1218–1231. Elsevier (2014)

    Google Scholar 

  103. Maggipinto, M., Terzi, M., Masiero, C., Beghi, A., Susto, G.A.: A computer vision-inspired deep learning architecture for virtual metrology modeling with 2-dimensional data. IEEE Trans. Semicond. Manuf. 31, 376–384 (2018). https://doi.org/10.1109/TSM.2018.2849206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Chryssolouris .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chryssolouris, G., Alexopoulos, K., Arkouli, Z. (2023). Artificial Intelligence in Manufacturing Processes. In: A Perspective on Artificial Intelligence in Manufacturing. Studies in Systems, Decision and Control, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-21828-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21828-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21827-9

  • Online ISBN: 978-3-031-21828-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics